
OFFICE OF SAFETY AND MISSION ASSURANCE NASA-GB-002-95

RELEASE 1.0

FORMAL METHODS

SPECIFICATION AND VERIFICATION

GUIDEBOOK

FOR SOFTWARE AND COMPUTER SYSTEMS

VOLUME I:

PLANNING AND TECHNOLOGY INSERTION

JULY 1995

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, DC 20546

NASA-GB-002-95
Release 1.0

FORMAL METHODS SPECIFICATION AND VERIFICATION

GUIDEBOOK FOR SOFTWARE AND COMPUTER SYSTEMS

VOLUME I" PLANNING AND TECHNOLOGY INSERTION

FOREWORD

The Formal Methods Specification and Verification Guidebook for Software

and Computer Systems describes a set of techniques called Formal Methods

(FM), and outlines their use in the specification and verification of computer

systems and software. Development of increasingly complex systems has

created a need for improved specification and verification techniques.

NASA's Safety and Mission Quality Office has supported the investigation of

techniques such as FM, which are now an accepted method for enhancing the

quality of aerospace applications. The guidebook provides information for

managers and practitioners who are interested in integrating FM into an

existing systems development process. Information includes technical and

administrative considerations that must be addressed when establishing the

use of FM on a specific project. The guidebook is intended to aid decision

makers in the successful application of FM to the development of high-

quality systems at reasonable cost. This is the first volume of a planned two-

volume set. The current volume focuses on administrative and planning

considerations for the successful application of FM. Volume II will contain

more technical information for the FM practitioner, and will be released at a
later date.

Major contributors to the guidebook include, from the Jet Propulsion

Laboratory: Rick Covington (editor), John Kelly (task lead), and Robyn Lutz;

from Johnson Space Center: David Hamilton (Loral) and Dan Bowman

(Loral); from Langley Research Center: Ben DiVito (VIGYAN) and Judith

Crow (SRI International); and from NASA HQ Code Q: Alice Robinson.

Special thanks go to other contributors and numerous reviewers for their

assistance in preparing the guidebook. A special acknowledgment goes to

Alice Robinson for her leadership and guidance since the inception of the
task.

This document is a product of the NASA Software Program, an agencywide

program to promote continual improvement of software engineering within

NASA. The goals and strategies for this program are documented in the

NASA Software Strategic Plan, July 13, 1995. Additional information is
available from the NASA Software IV&V at the World Wide Web site

http://www.ivv.nasa.gov.

iii

Office of Safety and Mission Assurance

NASA-GB-002-95

Release 1.0

Formal Methods Specification and Verification Guidebook

for Software and Computer Systems

Volume I: Planning and Technology Insertion

Approvals

John C. Kelly, Jet Propulsion Laboratory
Task Lead

Kathryn Kemp

Deputy Director, NASA IV&V Facility

Table of Contents NASA-GB-002-95

Release 1.0

TABLE OF CONTENTS

FOREWORD .. iii

TABLE OF CONTENTS .. vii

I. GENERAL .. 1

I. 1. PURPOSE ... 1

1.2. BENEFITS .. 1

1.3. READER'S GUIDE .. 3

1.4. ORGANIZATION OF THE GUIDEBOOK ... 4

II. CONCEPTS AND DEFINITIONS .. 5

II. 1. CONCEPTS ... 5

II.2. DEFINITIONS .. 6

II.3. A FORMAL METHODS EXAMPLE ... 7

III. INTEGRATING FORMAL METHODS INTO THE DEVELOPMENT PROCESS 11

III. 1. PROCESS PREREQUISITES ... 11

III.2. WHERE TO ADD FORMAL METHODS .. 11

III.3. PROCESS CHANGES ... 12

III.4. ORDERING OF ACTIVITIES ... 13

III.5. SAFETY ANALYSIS ... 13

III.6. MEASURING THE EFFECTIVENESS OF FORMAL METHODS 13

IV. ESTABLISHING FORMAL METHODS ON A PROJECT .. 15

IV. 1. ADMINISTRATIVE CONSIDERATIONS ... 16

IV.2. TECHNICAL CONSIDERATIONS .. 18

IV.3. INTEGRATING TECHNICAL AND ADMINISTRATIVE CONSIDERATIONS 24

IV.4. COST CONSIDERATIONS .. 24

IV.5. FORMAL METHODS LIMITATIONS ... 25

V. OVERVIEW OF FORMAL METHODS TOOLS AND TECHNIQUES .. 27

VI. CONCLUSIONS ... 29

VI. 1. KEY FEATURES OF FORMAL METHODS .. 29

VI.2. PREREQUISITES .. 29

VI.3. BENEFITS OF FORMAL METHODS .. 31

REFERENCES .. 33

APPENDIX A : FORMAL METHODS CASE STUDIES ... A-1

A.1. CASE STUDY DATA .. A-1

A.2. DESCRIPTIONS OF INDIVIDUAL TRIAL PROJECTS ... A-4

A.2.1. CASSINI CDS FAULT PROTECTION SOFTWARE A-4

A.2.2. SPACE SHUTTLE GPS SOFTWARE CR TASK .. A-7

A.3. REFERENCES .. A-11

APPENDIX B: GUIDE TO INFORMATION ON FORMAL METHODS TOOLS B-1

B. 1. A COMPREHENSIVE LIST OF FORMAL METHODS TOOLS B-1

B.2. DETAILED DESCRIPTION OF SELECTED TOOLS ... B-7

B.2.1. EVES .. B-7

B.2.2. HOL ... B-9

B.2.3. LARCH ... B-10

B.2.4. NQTHM .. B-11

B.2.5. NUPRL ... B-12

B.2.6. PVS .. B-13

B.2.7. RAISE ... B-15

B.2.8. VDM .. B-16

B.2.9. Z ... B-17

B.3. STATE-SPACE EXPLORATION TOOLS .. B-18

vii

Table of Contents NASA-GB-002-95

Release 1.0

B.3.1. COSPAN ... B-18

B.3.2. MURPHI ... B-20

B.3.3. SMV ... B-21

B.4. REFERENCES ... B-23

SUGGESTIONS FOR IMPROVEMENTS FORM ... C-1

ooo
Vlll

Section I NASA-GB-002-95
Release 1.0

I. GENERAL

1.1. PURPOSE

Formal Methods (FM) consist of a set of techniques and tools based on

mathematical modeling and formal logic that are used to specify and verify

requirements and designs for computer systems and software. The use of FM

on a project can assume various forms, ranging from occasional

mathematical notation embedded in English specifications, to fully formal

specifications using specification languages with a precise semantics. At their

most rigorous, FM involve computer-assisted proofs of key properties

regarding the behavior of the system. Project managers choose from this

spectrum of FM options as appropriate to optimize the costs and benefits of
FM use and to achieve a level of verification that meets the customer's needs

and budget constraints. Experience suggests that these choices are most

successful if based on certain managerial and technical considerations, which

are the major focus of the guidebook. FM play an important role in many

activities including certification, reuse, and assurance. Although the focus of

this guidebook is restricted to the role of FM in requirements analysis, much
of the discussion is also relevant to these other activities.

1.2. BENEFITS

The growing criticality and complexity of NASA applications and the

increasingly prominent role of software in these applications has led to

NASA's interest in FM techniques. This interest grows out of concerns such

as the following, which can be effectively addressed by the application of FM:

• Fault protection and safety functions can no longer be allocated solely

to hardware devices. Software in aerospace applications is needed to

detect failures, isolate them, and execute recovery routines.

• Software-intensive systems fail in ways that are characteristically

different from hardware components.

• Aerospace systems continue to become more complex, and

development of such systems places ever-increasing demands on

existing development and verification techniques.

• Organizations exercising existing techniques with a high degree of

discipline are experiencing "quality ceilings". In these projects,

traditional verification techniques have been improved and fine-tuned

to the point that major quality improvements can no longer be

achieved, even though some defects still remain in the developed

product.

• Although it is desirable to detect problems as early as possible after they

are introduced (because problems are cheaper to fix the earlier they are

Section I NASA-GB-002-95
Release 1.0

detected), few existing techniques which are appropriate for early life

cycle phases such as requirements and high-level design offer the rigor

and automatic support now considered necessary to verify the quality

of engineering products during these life cycle phases.

In addition, the development of requirements and design for software

systems can be particularly prone to errors, cause costly repairs, and have

lasting adverse effects. Studies of current and past software systems show the

necessity of building a better foundation for high quality systems during the

early phases of the developmental life cycle.

Software continues to play an increasingly prominent and critical role in

complex systems. Since development life cycles, failure models, and

verification methods that have performed well for hardware systems are not

always optimal for systems that include a significant software component, the

identification and evaluation of better verification techniques for such

systems will be an ongoing need within the systems development discipline.

This need, coupled with substantial improvements in FM techniques and

tools, have made FM specification and verification a technique for

consideration by most projects delivering a product that includes software.

FM complement inductive techniques such as testing and help projects move

beyond traditional quality ceilings.

The following are some of the benefits realizable from effective applications
of FM:

• FM help find defects; as evidence of this, when applied to high-quality

software systems, FM have found defects that went undetected during

extensive testing [Miller2]. The inductive nature of testing ensures that

complex systems will always have scenarios which cannot be tested due

to practical considerations.

• Formal specifications allow defects in requirements and designs to be

detected earlier than they would be otherwise and greatly reduce the

incidence of mistakes in interpreting and implementing correct

requirements and designs.

• Formalized statements can be analyzed and their consequences

calculated in a repeatable manner. The risks of drawing conclusions

about a system's behavior by extrapolating from a finite number of tests

often can be avoided by using proof methods based on mathematics.

Such methods allow large (potentially infinite) classes of test cases to be

fully covered in a finite proof, and they support reasoning that can be

checked by colleagues or by machine, with minimal dependence on

subjective reasoning.
• Use of FM causes more defects to be detected than would otherwise be

the case and in certain circumstances guarantees the absence of certain
defects.

Section I NASA-GB-002-95

Release 1.0

1.3. READER'S GUIDE

This guidebook is written for project decision makers, including managers,

engineers, and assurance personnel, who are considering the use of FM on

their project. It is intended to be an easily understood overview of important

management issues associated with the use of formal specifications and a

useful guide to planning and implementing FM on a project. It is presented

in a tutorial rather than prescriptive style. The current volume is Volume I

of a planned two-volume set. Volume II will contain detailed information

for technical practitioners of FM, and will be released at a later date. The

second volume will also address the needs of technologists whose role it is to

evaluate new technologies, to transfer those technologies into practice in

their organization, and to help projects in planning, training, and

implementation.

FM offer significant potential for improving defect detection early in the life

cycle. The guidebook is appropriate for candidate projects that use defect

prevention techniques such as formal inspections. The reader should be

aware that FM require commitment and a disciplined approach. This

guidebook will make it easier to start a serious investigation of how

appropriate FM are for a specific environment.

This guidebook includes some basic FM concepts and definitions. It

illustrates how FM facilitate the precise modeling of requirements and high-

level design using specifications based on the notations of discrete

mathematics. FM also support automated consistency checking and testing

specifications by proving key properties. The guidebook summarizes specific

FM tools and languages in Appendix B.

The use of formal specifications and proofs is not an "all-or-nothing"

approach. One can tailor the use to the level of rigor appropriate to specific

budget, schedule, and technical needs. This guidebook discusses the tailoring

necessary to integrate FM into an existing development process and the

tailoring to establish FM on a specific project. It also discusses how to gain

experience by applying FM on a relatively small trial project before

committing to wider project use. FM consist of many techniques that are

applied to different application domains in different ways.

This guidebook addresses the many benefits of FM, from enhancing the

likelihood of a correct implementation to finding more defects through

consistent, repeatable, and effective analysis. These benefits are directly

related to the use of precise unambiguous specifications and proofs supported

by computer-based tools. There are also indirect benefits. FM help engineers

focus on what a system should accomplish instead of how to accomplish it.

FM enhance existing review processes by encouraging rigorous arguments of

why and in what ways the specification is correct. Perhaps the biggest benefit

Section I NASA-GB-002-95
Release 1.0

is that FM are applicable to any life cycle phase, including the early phase

where a significant need currently exists for better analysis approaches.

Formal methods offer tangible benefits, but are not a panacea. FM have their

own limitations and potential pitfalls. This is precisely why this guidebook

has been developed: to help an organization reap the benefits and avoid the

pitfalls. In particular, the guidebook is intended to help a project choose the

level of FM appropriate for its schedule, budget, development environment,

and application domain. In the end, the reader will see that FM have

demonstrated unique capabilities that complement and go beyond existing

testing and analysis approaches.

1.4. ORGANIZATION OF THE GUIDEBOOK

The organization of the rest of this guidebook is as follows. In Section II, we

introduce FM concepts and definitions. In Section III, we discuss how to

integrate FM techniques into the systems development process, followed in

Section IV by a detailed discussion of factors relevant to establishing FM on a

project. Section V provides an overview of FM tools and techniques. Finally,

we provide a summary and conclusions in Section VI. Case study

information on several small applications of FM to NASA pilot projects is

included in Appendix A. Appendix B offers a comprehensive list of FM tools

and more detailed descriptions of the most widely used tools.

SectionII NASA-GB-002-95
Release 1.0

II. CONCEPTS AND DEFINITIONS

II. 1. CONCEPTS

Formal Methods (FM) refer to the use of techniques from formal logic and

discrete mathematics in the specification, design, and construction of

computer systems and software. FM allow the logical properties of a

computer system to be predicted from a mathematical model of the system by

means of a logical calculation, which is a process analogous to numerical

calculation. That is, FM make it possible to calculate whether a certain

description of a system is internally consistent, whether certain properties are

consequences of proposed requirements, or whether requirements have been

interpreted correctly in the derivation of a design. These calculations provide

ways of reducing or in some cases replacing the subjectivity of informal and

quasi-formal review and inspection processes with a repeatable exercise. This

is analogous to the role of mathematics in all other engineering disciplines;

mathematics provides ways of modeling and predicting the behavior of

systems through calculation. The calculations of FM are based on reasoning

methods drawn mainly from formal logic. Systematic checking of these

calculations may be automated.

Formal modeling of a system usually entails translating a description of the

system from a non-mathematical model (data-flow diagrams, object diagrams,

scenarios, English text, etc.) into a formal specification, using one of several

formal languages. This results in a system description that possesses a high

degree of logical precision. FM tools can then be employed to logically

evaluate this specification to reach conclusions about the completeness and

consistency of the system's requirements or design. Manual analyses (e.g.,

peer reviews) of the formal model are used as an effective first check to assure

the general reasonableness of the model. These are followed by tool-based

analyses, which raise the level of reliability and confidence in the system

specification even further. FM analysis techniques are based on deductive

rather than inductive reasoning about system descriptions, allowing entire

classes of issues to be resolved before requirements are committed to the

design and implementation phases. FM complement the inductive testing

that follows implementation by allowing the testing phase to focus on a

potentially smaller or more problematic range of test cases.

FM techniques and tools can be applied to the specification and verification of

products from each development life cycle: requirements, high-level and

low-level design, and implementation 1. The process of applying FM to

1Cost-benefit analysis generally favors FM applied to early life cycle phase products

(requirements and high-level design).

SectionII NASA-GB-002-95
Release 1.0

requirements or design differs mainly in the level of detail at which the

techniques are applied. These techniques include: writing formal

specifications, internal checking (e.g., parsing and type correctness),

traceability checking, specification animation, and proof of assertions.

Although this entire suite of techniques could be applied to all requirements

and design elements, this is not the usual approach. Instead, an important

subset of the requirements is chosen to undergo FM, then a subset of the

techniques is chosen for application. This enables the project to choose a

level of verification rigor appropriate to its budget, schedule, and to the

development team's technical needs.

In addition to the function FM perform within a single development life

cycle phase, FM can also be used to establish and maintain strict traceability

between system descriptions across different life cycle phases. We can think

of a hierarchy of system description documents, each of which describes the

system at a different level of detail. Moving from the most abstract to the

most concrete, there are requirements, high-level design, low-level design,

and implementation. These documents also correspond to different life cycle

phases. FM can be used to demonstrate that a property at some level in the

hierarchy gets implemented correctly by the next-lower level. In a thorough

and rigorous treatment, FM can help demonstrate that requirements are

correctly reflected in a subsequent design and that design features are correctly

reflected in a subsequent implementation.

II.2. DEFINITIONS

The following are working definitions for basic terms and concepts discussed

in this guidebook.

A formal specification is a concise description of the behavior and properties

of a system written in a mathematically-based language, specifying what a

system is supposed to do as abstractly as possible, thereby eliminating

distracting detail and providing a general description resistant to future

system modifications. The most formal specifications are written in a

language with a well-defined semantics that supports formal deduction and

allows the consequences of the specification to be calculated through proof of

putative theorems.

A formal proof is a complete and convincing argument for the validity of a

statement about a system description. A proof proceeds in a series of steps,

each of which draws conclusions from a set of assumptions. Justification for

each step is derived from a small set of rules which state what conclusions

can be reasonably drawn from assumptions. Such justification eliminates

ambiguity and subjectivity from the argument. Formal proofs may be

Section II NASA-GB-002-95
Release 1.0

prepared manually or, preferably, with the assistance of an automated FM
tool.

Abstraction is the process of simplifying and ignoring irrelevant details and

focusing, distilling, and generalizing what remains. In FM, abstraction is a

tool for eliminating distracting detail, avoiding premature commitment to

implementation choices, and focusing on the essence of the problem at hand.

Specification animators (also called emulators) are executable programs

which reinterpret a formal specification into a high-level dynamically

executable form. Specification animations are not formal in a strict sense, but

support the formal requirements and design verification process by providing

analysts with an early view of the high-level dynamic behavior of the

requirements.

II.3. A FORMAL METHODS EXAMPLE

At this point we introduce a small example to clarify many of the concepts

introduced earlier. The example illustrates the use of formal specifications to

model a system, to enhance the consistency of the specification, and to suggest

the role of proof in establishing desired system properties. The purpose of

this discussion is to provide a concrete, albeit small and highly simplified

example. Readers interested in a more detailed tutorial discussion should

consult [Butler], [Weber-Wulf], and [Wordsworth]. Those interested in more

realistic or industrial-scale applications can find excellent discussions in

papers, technical reports, and books, including [Millerl] and [Bowen2].

Consider the following typical informal requirements expressed in English:

A tank of cooling water shall be refilled when its low level sensor

comes on. Refilling consists of adding 9 units of water to the tank.

Notes:

• The maximum capacity of the tank is 10 units of water.

• From one reading of the water level to the next reading of the
water level, 1 unit of water will be used.

• The low level sensor comes on when the tank contains 1 unit of

water or less.

The above statement contains several descriptions, including two key

notions: the water level in the tank and the water usage. Formally, these

Section II NASA-GB-002-95

Release 1.0

notions can be modeled as follows (statements 1 and 2):

1

2

level is represented by a restricted integer type: a

between 0 and 10, inclusive

usage is represented as the integer constant 1

number

That is, level describes an amount of water that the tank may hold at any

point in time and usage describes the amount of water used during one cycle.

The primary requirement is that 9 units of water will be added to the tank

whenever the level is less than or equal to 1. This can be more precisely 2

stated as (statement 3):

3 Function fill takes, as input, a water level and returns, as

output, a water level. Given an input of L units of water, fill

returns L+9 if L is one or less, otherwise it returns L.

That is, we claim that fill (L) accounts for any filling of water in the tank.

A commonsense property of this system is that, at the next cycle, the new

water level will be the current water level, plus any amount that was added,

minus the amount that was used. That is, given L as the current level of

water, the level at the next cycle should be given by statement 4:

4 level = L + fill(L) - usage

One approach to checking this specification is to ensure that each reference to
a level of water is consistent with the definition of level, i.e., it should

always be a number between 0 and 10. It turns out that the specification for

fill given in 3 above is consistent with the definition of level if the

following two logical statements are true:

5 FORALL levels L

(L <= i) IMPLIES THAT

(0 <= L + 9) AND

(L + 9 <= i0)

6 FORALL levels L

(0 <= L + fill(L) - usage)

(L + fill(L) - usage <= i0)

AND

(Statements 5 and 6 can be derived straightforwardly by means of FM

techniques. Many FM tools can produce such expressions automatically from

z This specification is given in a form of structured English so that the reader can easily follow

it without having to learn a formal specification language. Such specifications are more precise

than those written in conversational English but are still less precise than those written in a

formal specification language.

Section II NASA-GB-002-95
Release 1.0

a set of system definitions.) The following statements (statements 5.1 and

5.2) constitute an informal proof that the first FORALL statement (statement

5) is true:

L+9 >= 0 because L >= 0 (and the sum of any two numbers greater

than zero is greater than zero)

L+9 <= 10 because L <=1 (and any number less than or equal to 1

plus 9 is less than or equal to 10)

However, the second FORALL statement (statement 6) is not true. Consider

the case when L is 9:

L+fill(L)-l=L+L-l=9+9-1=17 (which is not<=10)

So clearly, something is wrong. Upon closer examination, it is found that

statement 4, our expression for the water level at the next cycle, is in error:

4 level = L + fill(L) - usage (incorrect)

This statement is inconsistent with the definition of fill because fill

returns the new level of water, not just the amount of water added. The

(corrected) expression for level, denoted by 4', is simply:

4' level : fill(L) - usage (correct)

and the (corrected) FORALL statement (statement 6) is:

! FORALL levels L:

(0 <= fill(L) - usage)
(fill(L) - usage <= 10)

AND

This example illustrates the following:

• Formal Specification: Modeling informal English statements using

mathematical expressions

• Type Checking: Checking that all types of items are used consistently

(e.g., level)

• Stating Properties: Identifying and defining expected behavior of the

system (e.g., the expected new level in the tank).

• Proving Logical Conditions: Constructing logical proofs which show

that a given condition holds under all possible situations.

This example also illustrates how formal analysis can expose errors and

inconsistencies in a specification. In the example, the name chosen for the

"fill" function in statement 3 is misleading because the function returns the

"actual level" rather than the "amount added". Statement 4, although

Section II NASA-GB-002-95
Release 1.0

wrong, is consistent with the casual reader's expectations, so the error is easy
to overlook.

In simple cases such as this, an informal inspection of the specification can be

expected to find the error. However, the use of FM resulted in a systematic

and reproducible approach to uncovering the problem. Similar results can be

achieved in challenging industrial-scale specifications, where such errors can

be obscured within many pages of requirements.

This example does not show how tools can be used to assist in formal

analysis. That topic will be addressed in Volume II of this guidebook.

10

Section III NASA-GB-002-95
Release 1.0

III. INTEGRATING FORMAL METHODS INTO THE

DEVELOPMENT PROCESS

The purpose of this section is to provide guidance on identifying changes

necessary to integrate formal methods (FM) into an existing software process.

III.1. PROCESS PREREQUISITES

An effective introduction of FM assumes that a sufficiently well-defined

process with the following characteristics has already been established:

• Discrete phases or steps are clearly defined and documented, e.g.,

requirements phase, high-level design phase, etc.

• Work products are specified for each phase, e.g., requirements

document, high-level design diagrams, etc.

• Analysis procedures are established to ensure correctness of work

products, e.g., proofs of key system properties.

• Reviews of major work products are scheduled, e.g., design inspections.

A process which lacks these aspects is unlikely to be mature enough to realize

substantial benefit from the application of FM. Put somewhat differently, FM

is not a "silver bullet" that solves all development problems. For example,

quality problems in a new or immature process are more likely to benefit

from establishing a well-defined process and including basic defect

prevention techniques such as formal inspections. On the other hand, if

existing techniques are well-established and performing effectively, then the

addition of FM-based strategies can further enhance quality assurance
activities.

III.2. WHERE TO ADD FORMAL METHODS

As was pointed out in Section II. 1., FM can be applied to any or all phases of

the process, although the benefit-to-cost ratio of applying FM seems to be best

during the requirements and high-level design phases. FM complement

early development phases, which are currently less automated and less tightly

coupled to specific languages and notations, and for which work products are

typically less effectively analyzed than those of later development stages. FM

compensate for these limitations without intruding on the existing process.

For example, requirements are currently maintained as English language

statements that are hard to check with automated tools. This deficiency is

mitigated by the systematic, repeatable analysis supported by FM requirements

specification and proof, while necessitating no changes to the natural

language requirements statements.

11

Section III NASA-GB-002-95
Release 1.0

As FM are injected into later life cycle phases, integration raises more

technically challenging problems and the injection of FM becomes more

intrusive. For example, the languages used for FM specification and proof

and those used for programming generally exhibit fundamental semantic

differences that make it difficult to synthesize a process that effectively uses

both. Extreme care is required to ensure that the semantic differences

between the formal specification language and the programming language are

not a source of ambiguity or other type of error during development.

The best strategy is to apply FM to the earlier life cycle phases where it will

have the most positive impact and consider adding it to selected later phases

based on the guidance in Section IV. The application of formal specifications

at the requirements life cycle phase will help ensure that the resulting

software is verifiable. The addition of FM will usually add a certain amount

of cost to these phases while saving cost in later phases and during

maintenance of the work products. In this respect, the use of FM is similar to

other defect prevention techniques such as formal inspections. If heavy

emphasis is already placed on analysis of early work products (e.g.,

requirements), the use of FM could potentially reduce the cost in these early

phases by replacing expensive ad-hoc techniques (e.g., manual verification of

interface tables) with more effective and systematic ones.

III.3. PROCESS CHANGES

To each phase in which FM is applied, some of the following products and

activities may be added:

1. A new analysis activity called "modeling", during which an initial,

often graphical, description of the relationship between system entities

is proposed. Various methodologies (finite-state machines, object-

oriented design, etc.) are possible.

2. A new development activity called "formalization" during which the

formal specification is created.

3. A new type of work product called a "formal specification". This can be

a separate product or an addition to an existing work product such as a

requirements document.

4. A new analysis activity called "specification animation" (defined in

Section II.2.) to better understand the behavior implied by the formal

specification.

5. A new analysis activity called "proving assertions" (see Section II for

details) to enhance the correctness of the formal specification and to

understand the implications of the design captured in the

requirements and specification.

12

Section III NASA-GB-002-95
Release 1.0

6. A review of the formal specification to check the coverage,

"correctness," and comprehensibility of the formal specification.

7. An enhancement of traceability tools and techniques to track new

products such as formal specifications and proofs, and their

relationships to existing products.

While the above activities can be broad in scope, they pose no significant

technical challenge. Additions 1-3 and 7 are typically a minimal set, while

additions 4-6 are optional. Consult Section IV for guidance on integrating
additions 4-6.

III.4. ORDERING OF ACTIVITIES

There is no rigid ordering of the activities for FM; in fact, an iterative

approach is the most effective for developing and analyzing specifications.

Reviews can be productive at any point after the specification is reasonably

well-developed, either before or after key properties have been proved. At a

minimum, a review should be held after the specification is complete. If an

extensive set of assertions are to be proven after the initial specification

review, a subsequent review will be useful to assess the adequacy of the

proven assertions, and to motivate discussion of changes to the specification,

if any, that might have been introduced to support the proofs.

III.5. SAFETY ANALYSIS

Standard analysis focuses on functional correctness, i.e., behavior that the

system should exhibit. Safety analysis generally focuses on behavior that the

system should not exhibit because it would create an unsafe or hazardous

condition, e.g., the system should not send an erroneous command or fail to

respond in a timely fashion. Safety analysis requires looking at a work

product from a safety point of view, and can be combined with traditional

analysis or performed as a separate activity. Analysis techniques for software

safety are currently not as well-defined as those for hardware safety, but FM

complement existing techniques by providing methods for stating and

analyzing safety properties. More specifically, FM provide a way of stating

functional correctness and safety properties within a formal specification, and

then demonstrating that the specification satisfies the given safety properties.

FM can be used to formalize and automate an existing safety analysis step or

to assist and reinforce the addition of a safety analysis step to an existing

process.

III.6. MEASURING THE EFFECTIVENESS OF FORMAL METHODS

13

Section III NASA-GB-002-95
Release 1.0

Little is known about effective metrics for FM [Craigenl, Fenton].

Nevertheless, a mature process should include provisions for collecting data

on the effectiveness of FM, or on the effectiveness of any process activity.

Due to the iterative nature of the process of specification and proof, it is best
to combine the two activities for an assessment of cost-effectiveness.

Potentially useful metrics include:

• Number of pages of English description that were used as the basis for

the formal specification, along with a subjective indication of their

level of detail and completeness (e.g., high, medium, low).

• Number of lines of formal specification produced.

• Amount of time spent in developing specifications, including

properties and proofs.

• Number of issues found in the original requirements (i.e., the

requirements in their English description form, before being

formalized), along with a subjective ranking of importance (e.g., major,

minor).

• Amount of time spent in reviewing and in inspection meetings, along

with a number and type of issues found during this activity.

• Number of issues found after requirements analysis, along with a

description of why the issue was not found (e.g., inadequate analysis,

outside the scope of the analysis, etc.)

14

SectionIV NASA-GB-002-95
Release 1.0

IV. ESTABLISHING FORMAL METHODS ON A PROJECT

The previous section provided a general discussion of the impact of

introducing and integrating formal methods (FM) into the development

process. In this section, we move to more specific considerations that should

be reviewed each time FM are proposed for a given project. There are

basically two types of considerations, one of which is largely administrative,

the other largely technical. A summary of each appears below.

Administrative Factors:

• Project Staffing: The team responsible for planning the role of FM on a

project should include at least one person knowledgeable in FM and

one person knowledgeable about the application domain. The team

responsible for applying FM must have FM expertise or be provided

with hands-on training.

• Project Scale: The scale of the project should be taken into

consideration. If project staff has little or no previous FM experience,

an initial study may be advisable either as a final objective or as a lead-

in to the full-scale project.

• FM Training: The training available to those project staff responsible

for applying FM should be rigorous and include hands-on experience

with the tool(s) and type of application that will be encountered on the

project.

• Process Integration: The strategy for integrating FM into a new or

existing process should be thoroughly planned and documented,

preferably early in the project.

• Project Guidelines: Project guidelines, standards, and conventions,

both for documentation and specification, should be developed early
and adhered to.

Technical Factors:

• Type of Application: FM are not equally appropriate for all

applications; they are best suited to analyzing complex problems, taken

singly and in combination, and less suited for numerical algorithms or

highly computational applications.

Size and Structure of Application: The size and structure of an

application determine the difficulty of using FM; ideally, applications

should be of moderate size (guidance on how to assess size will be

addressed in this item's section below), decomposable into subsystems

or components, and based on a coherent underlying structure.

Type of Analysis/Formal Method: The type of analysis, i.e., the reasons

for applying FM, determine the most appropriate level of

formalization and the most suitable FM and FM tools. Objectives in

using FM range from producing clear, unambiguous documentation to

15

SectionIV NASA-GB-002-95
Release 1.0

mechanically verifying the correctness of crucial algorithms or

components.

• Levels of Rigor in FM: FM may be applied at varying levels of rigor.

The rigor, or extent to which a method is "truly formal" and "really

calculates," can range from the occasional appearance of mathematical

notation in an otherwise informal document, through "rigorous"

methods that employ a standardized specification language, to "fully

formal" methods that make use of mechanically-checked theorem

proving.

• Scope of Formal Method Use: There are at least three dimensions to

the scope of formal method use: (1) all/selected stages of development

life cycle, (2) all/selected system components, (3) full/selected (system)

functionality.

• Type of Formal Method Tool: The choice of FM tool, if any, should be

directly determined by the application profile generated by evaluating

the five preceding factors. Primary considerations include the type of

specification language and the need for mechanical proof support.

These administrative and technical considerations are, of course, closely

coupled, each having implications for the other. This is particularly true

because the process of determining whether a given application is a good
candidate for FM is not cut and dried and because the use of FM entails a

serious technical commitment by project staff and a corresponding

commitment to support and invest in the FM activity on the part of

management. This discussion offers useful guidance, but can not supplant

the judgment that comes with experience, i.e., with diligent practice and

accumulated expertise.

The discussion is organized as follows. Section IV. 1. provides a more detailed
account of the administrative considerations listed above, Section IV.2.

similarly elaborates the technical considerations, Section IV.3. collapses the

administrative and technical considerations into a generic plan, Section IV.4.

sketches cost considerations, and Section IV.5. summarizes general caveats

with respect to FM use.

IV.1. ADMINISTRATIVE CONSIDERATIONS

FM offer significant potential for improving system and software analysis on

many types of projects. The adoption of FM requires careful planning and

management, ideally including a planning activity that addresses the five

administrative considerations introduced previously and discussed further in

the following paragraphs.

Project Staffing Construction of a successful plan for using FM on a project

requires the participation of people with the right combination of skills --

16

Section IV NASA-GB-002-95

Release 1.0

people with FM expertise and people with project domain knowledge. FM

skills are required to ensure that suitable applications are paired with

effective tools, and domain knowledge is needed to identify candidate

applications. It will not be possible for people with domain knowledge to

learn FM or for people with FM knowledge to learn the application

domain during the initial planning period; the transition staffing plan

should include at least one FM lead and one key project lead to head the

planning phase.

After the initial planning phase, staffing for project execution must take

into account the discipline and commitment required for effective FM use.

It is also essential to identify domain and FM leads willing and available to

act as project advisors and to field the questions about tools, strategies,

domain issues, etc. that inevitably arise during formalization and proof.

Project Scale When FM are applied to a project for the first time, it may be

advisable to use FM on a scale less than the entire project, i.e., to define an

initial study. Although many FM pilot projects have been performed, a

project may choose to perform its own study

• as a training exercise,

• to better understand what parts of the system will most benefit from

FM use,

• to learn what types of FM are most suitable for project use, or

• to validate the feasibility of using FM in the given project
environment.

By performing one or more small trial studies, the project can introduce a

few key people to FM and demonstrate that FM do indeed produce benefits

in the given environment. People introduced to FM on the trial study can

later serve as sources of expertise for this and subsequent projects,

providing moral support as necessary. Support and consultation from

peers and colleagues have been shown to be one of the most effective

strategies for introducing new techniques and systems (a "product

champion" approach).

Project Training Effective FM use requires staff with existing FM expertise or

a management commitment to rigorous, hands-on training that includes

exposure to the tool(s) and type of application(s) that will be encountered

on the project. It is not realistic to expect untrained project staff to make

significant use of sophisticated specification languages and mechanical

theorem checkers. The amount of training required depends on the

person's technical background, as well as predictable traits such as

discipline, perseverance, willingness to experiment, ability to assimilate

new knowledge quickly, etc. The level of training required also varies

depending on project responsibilities; staff responsible for writing and

17

Section IV NASA-GB-002-95
Release 1.0

analyzing specifications will require more training than staff using

specifications largely as documentation. The fact that some FM are easier

to learn and use than others will also affect the level of training required.

If FM expertise is not available within the project, expertise may need to be

brought in for training purposes and retained during the early phases of

the project.

Process Integration If the existing process includes defined requirements

analysis steps and reviews, the integration of FM will probably involve

little, if any, change to the established process; FM can generally be

effectively inserted at relevant points in the existing process. For example,

formal specifications can be used to complement or replace the existing

documentation used to conduct formal or quasi-formal reviews. If the

existing process is new or not well established or defined, the process itself,

as well as the integration of FM, should be explicitly planned and

documented. A possible exception is the integration of FM on a pilot

project, in which case process definition and documentation may follow,

rather than precede the project. Specific process considerations are
discussed in Section III above.

Project Guidelines Writing specifications in a language designed to support

FM is analogous to writing programs in a conventional programming

language; the same considerations of configuration management,

language conventions, reusable modules, standards, and documentation

apply. As in the conventional software domain, such guidelines are most

effective if they are in place before the project (including training) begins.

From an administrative perspective, the benefits of timely, well-

established guidelines are improved project communication and

productivity; sharing and reuse of specifications is one of many possible

benefits realizable in the context of explicit project guidelines.

IV.2. TECHNICAL CONSIDERATIONS

FM cover a wide range of techniques that have different characteristics and

utility. In this section, we discuss the scope and implications of these

differences with respect to five technical factors that should be evaluated

when considering the use of FM for a given application. The factors are

introduced in the suggested order of consideration; e.g., before choosing a

formal method tool, it is important, first, to define the type and scope of

application, second, to specify the type of analysis to be performed, and third,

to determine the rigor and scope of the analysis.

Type of Application FM are not equally suitable for all types of applications.

Although, in principle, the methods can be applied to nearly any

application, in practice, the benefits that can be realized and the difficulty

18

SectionIV NASA-GB-002-95
Release 1.0

of achieving them will differ significantly from one application to

another, and from one subsystem to another within a single application.

Suitability should be evaluated with respect to the characteristics of the

problem domain and their implications for the modeling domain.

Higher complexity applications stand to gain from FM much more than

lower complexity ones simply because less complex problems can be

solved dependably using less rigorous methods. Of particular interest are

problem domains whose complexity stems not so much from the size and

structure of the design, but from inherently difficult algorithms such as

those for fault tolerance and parallel or distributed processes.

A further consideration is the mathematical domain of discourse.

Applications that are heavily based on numerical processing, especially

those using floating point arithmetic, pose some difficulties for FM 3, while

those that can be modeled using the domains of logic and discrete

mathematics benefit from easier formalization, more tractable reasoning,

and better FM tool support.

Size and Structure of Application The size of an application is a major factor

in the cost and difficulty of its formalization. To make the issue of size

more concrete, consider the experience base of industrial software projects

that have made serious use of FM with automated tool support. A

common measure of application size used in this environment is

thousands of source lines of code (KSLOC). For design-level specification

and verification efforts, most of the industrial systems or subsystems have

been in the neighborhood of tens of KSLOC in size, with an upper limit of

perhaps 100 KSLOC. For code-level verification, which is less commonly

employed and usually limited to R&D efforts, the sizes have been under

10 KSLOC [Polak, Smith]. For applications using less rigorous FM, i.e.,

those lacking tool support and limited to formal specifications only, there

have been efforts in the hundreds of KSLOC range 4.

Due to considerable variation in the level of detail represented, it is more

difficult to get a good measure of size in the case of FM used primarily to

model requirements. A reasonable estimate is that requirements analysis

efforts have been performed for architectures ultimately expanding into

systems on the order of hundreds of KSLOC.

As these figures suggest, FM are most effectively applied to systems or

subsystems of moderate size; currently, FM cannot be applied in full to the

largest systems implementable using conventional programming

3Historically, working with axiomatizations of real numbers to reason with rigor about
traditional engineering mathematics has been found to be an awkward and daunting task.

4 See [Craigenl], Figure 2 on p. 8 of Volume 1.

19

SectionIV NASA-GB-002-95
Release 1.0

techniques. An alternative is to limit the scope of the formal method

activity to critical properties or components of a very large system,

assuming, of course, that the system is decomposable into small or

medium-sized subsystems or components with well-defined interfaces.

This clean structuring property is vital in any medium- or large-scale

application to ensure that the results of separate FM analyses can be

combined and valid inferences drawn about the composite behavior of

cooperating subsystems.

A second structural property, loosely referred to as structural entropy, is

also important. If an application has intrinsically high entropy, i.e., is

primarily a random collection of special cases with weak cohesion or few

unifying principles, little can be expected from a formalization activity.

Conversely, if an application exhibits strong underlying structural

principles, well understood and easily expressed in a logically meaningful

way, FM can effectively capture and exploit this structure.

Type of Analysis/Formal Method The type of analysis or formal method to

be employed is determined largely by project objectives; the purpose for

which FM are to be applied should be clearly defined and explicitly

documented. For example, one application may use FM primarily to

develop specifications for documentation, another may exploit the

precision inherent in formally specified requirements to catch errors early

in the life cycle, a third may use FM to analyze and assure the correctness

of critical properties or algorithms. These equally legitimate objectives

have very different implications for the rigor of the formal method

analysis and the type of formal method tool appropriate for the project, as
discussed below.

Levels of Rigor in Formal Methods FM techniques may be applied at varying

levels of rigor. Here, rigor is used in a technical sense to mean the degree

of formality of a method, i.e., the extent to which a method formulates

specifications in an axiomatic style, explicitly enumerates all assumptions,

and reduces proofs to explicit applications of elementary rules of inference.

Increasing formality allows the products of FM (i.e., specifications and

proofs) to be less dependent on subjective reviews and consensus and

more amenable to systematic analysis and replication. (Note that

"rigorous" in a broader sense is sometimes used to mean "painstakingly

serious and careful", which implies nothing about the level of formality

in the mathematical sense used here.) Since it is extremely difficult to be

truly formal with pencil and paper (cf., for example, [Rushby]), increasing

formality is usually associated with increasing dependence on mechanical

support.

Listed in order of increasing formality and effort, a suggestive guide to

levels of rigor includes:

2o

Section IV NASA-GB-002-95

Release 1.0

1. Use of manual review and inspection (e.g., "structured walk-throughs"

and "formal inspections") [Faganl, Fagan2, NASAGB1, NASAGB2,

Weller], relying on documents written in a natural language,

pseudocode, or programming language, possibly augmented with

diagrams and equations, and validated with conventional testing

techniques. Activities at this level are not "formal" in a strict sense,

but represent current recommended practice, and serve as a baseline of

discipline and structure necessary to support the additional activities at

higher levels of formality.

2. Use of notations and concepts derived from logic and discrete math to

develop more precise requirements statements and specifications.

Proof, if any, is informal. This level of FM typically augments existing

processes without imposing wholesale revisions. Examples include

the "AT" or Software Cost Reduction (SCR) methodology [vanSchou,

Heninger] and various case and object-oriented modeling techniques

[Rumbaugh] and Mills and Dyer's Cleanroom methodology [Dyer,

Mills], although the latter is an exception in that it supplants rather

than augments existing processes.

3. Use of formalized specification languages with mechanized support

tools ranging from syntax checkers and prettyprinters to typecheckers.

This level of formality usually includes support for modern software

engineering constructs, e.g., modules, abstract data types, and objects, all

with explicit interfaces, but has not historically offered mechanized

theorem proving. 5 Examples include Larch [Guttag], RAISE [Nielsen],

VDM [Jones], and Z [Spivey].

4. Use of fully formal specification languages with rigorous semantics and

correspondingly formal proof methods that support mechanization.

Examples include HOL, Nqthm, PVS [Owre], Eves [Craigen2], and SDVS

[Cook]. State exploration [Dill], model checking [McMillan], and

language inclusion [Kurshan] technologies also exemplify this level,

although these technologies are highly specialized, automatic theorem

provers that are limited to checking properties of finite-state systems.

Higher levels of rigor are not necessarily superior to lower levels; factors

that determine the appropriate level of rigor include: project objectives,

criticality of the application, and available resources. For example, if FM

are used simply as documentation, Level 2 may be appropriate; if they are

used to justify the design of a new and critical component, Level 4 may be

the best choice. On the other hand, routine applications adequately

handled by conventional processes are probably most appropriately left to

5Formal methods are evolving and many of these methods are in the process of migrating

"upward" as increasing mechanization occurs. The distinctions in this classification should be

interpreted broadly, as a guide to a diverse range of techniques; the characteristics of

individual techniques change and need to be reevaluated before use on a given application.

21

Section IV NASA-GB-002-95
Release 1.0

Level 1. Finally, it is possible to use a formal method at a level of rigor

lower than its ultimate capability, e.g., by using the specification language,

but not the theorem-proving capability of a Level 4 formal method.

Scope of Formal Method Use The extent to which FM are applied can also

vary. There are at least the following three dimensions to the notion of
extent.

1. All or selected stages of the development life cycle: It is generally felt

that the biggest payoff from the use of FM occurs in early life cycle

stages, given that errors become more expensive to correct as they

proceed undetected through later development stages; early detection

leads to lower life cycle costs. Moreover, the use of FM in the early

stages provides additional precision where it is currently most needed

in the conventional development process.

2. All or selected system components: Criticality assessments, assurance

considerations, and architectural characteristics are among the key

factors used to determine which subsystems or components to analyze

with FM. Since large systems are typically composed of components

with widely differing criticalities, the extent of formal method use

should be dictated by project-specific criteria. For example, a system

architecture that provides fault containment for a critical component

through physical or logical partitioning provides an obvious focus for

FM activity and enhances its ability to assure key system properties.

3. Full or selected system functionality: Although FM have traditionally

been associated with "proof of correctness," i.e., ensuring that a system

component meets its functional specification, they can equally well be

applied to only the most important system properties. Moreover, in

some cases it is more important to ensure that a component does not

exhibit certain negative properties or failures, rather than to prove that

it has certain positive properties, including full functionality.

These are the three most commonly used variations on the extent of FM

application, although others are certainly possible. Varying the degree of

rigor along each of these three dimensions yields a wide range of options

and provides maximal benefit from a limited investment in FM.

Type of Formal Method Tool The choice of tool is dictated by the application

profile defined by consideration of all of the preceding factors, although

the issue of tools is clearly moot if the most appropriate level of rigor falls

below Level 3. For example, Level 3 documentation of sequential

components is consistent either with a typical Level 3 notation supported

by a typechecker, or, if more powerful mechanization and stronger

guarantees of consistency are desired, with a system normally used to

support Level 4. Similarly, when choosing a Level 4 tool, the capability of

the tool, the constraints of the problem domain, and the objectives of the

22

Section IV NASA-GB-002-95
Release 1.0

analysis must be well matched. For example, verifying the correctness of

fault-tolerant algorithms is probably best pursued with a general-purpose

theorem prover, while exploring the properties of mode-switching or

other complex control logic is probably more effectively pursued with a

state-exploration system.

The process of selecting a formal method tool is in many ways similar to

selecting any other software system; the usual considerations of

documentation, tutorials, history of use, ease of use, etc. apply. In this

case, effective support for the selected formal method(s) is also important.

A suggestive, but by no means exhaustive, list of the additional

considerations necessary for judicious tool selection appears below. 6 These

considerations are largely technical in nature, and the reader new to FM

may wish to skip to Section IV.3.

• Specification Language: Is the language adequately expressive for the

given application and which of the following features important for

the application does the language offer: well-defined semantics,

modern programming language constructs (including support for

abstraction, modularity, and encapsulation), familiar and convenient

syntax, strong typing, encapsulation, parameterization, built-in model

of computation, executable subset or other provision for animating

specifications, support for state exploration, model checking, and
related methods?

• Theorem Prover: Does the FM tool offer a theorem prover or proof

checker? If so, how is the theorem prover controlled and guided; is

there automated support for arithmetic reasoning, efficient handling of

large propositional expressions, and rewriting; what support is there

for developing and viewing the proof; can lemmas be used before they

are proved and can new definitions be introduced and existing

definitions modified during proof; how is the proof presented to the

user (e.g., user input or canonical expressions, with or without

quantifiers); are the foundations (i.e., all axioms, definitions,

assumptions, lemmas) of the proof identified; are there facilities for

editing proofs; is it reasonably easy to reverify a theorem after slight

changes to the specification?

• Utilities: Does the formal method offer a reasonably comprehensive

library of standard types, functions, and other constructions and is the

library validated; what, if any, editing and document preparation tools

does the system provide; are there facilities for cross-referencing,

browsing, and requirements tracing; is there support for incremental

6A more detailed discussion of these and other considerations can be found in [NASAFAA, pp.

154-173] Technical aspects of tool selection will be discussed in detail in Volume II of this
guidebook.

23

SectionIV NASA-GB-002-95
Release 1.0

development across multiple sessions and for change control and

version management?

IV.3. INTEGRATING TECHNICAL AND ADMINISTRATIVE CONSIDERATIONS

The two preceding sections discussed administrative and technical factors that

should be evaluated when considering the use of FM. In this section, these

two types of factors are integrated into a generic plan summarizing the steps

involved in establishing FM on a project. The plan is presented in tabular

form and includes 8 steps listed (from top to bottom) in chronological order.

Planning Step Notes

Identify FM and Application Domain FM & Application Expertise Essential
Expertise

Define Scale Trial, Partial or Full Scale Project?

Choose Application Application type, available personnel, etc.
Select Methods Use FM Expertise to identify suitable FM

Select Tools Consider application type, human & system
resources

Implement Training View training as an investment

Develop Project Guidelines Considerations analogous to those for
conventional software

Track & Document Process Changes Update & revise process & documentation
with project feedback

For additional information on general issues of technology transfer, see also

[Davis] and [Potts].

IV.4. COST CONSIDERATIONS

Data collected in several pilot projects [NASAFM] show that the act of

formally stating specifications is generally cost-effective. For critical

applications, the act of proving key properties also appears to be cost-effective,

although there is less data to support this claim. Due to the difficulty of using

statistical techniques to analyze software engineering methods [Fenton],

reliable data on FM cost and effectiveness is hard to come by, although

available data strongly suggests that judiciously applied FM are cost-effective.

Given the above, prudent advice to projects would be the following. In the

context of a stable, controlled software process that includes an emphasis on

quality assurance in the requirements phase 7, generate a formal specification

for a core subset of important requirements. Conscientiously and

7Without a stable software process and a commitment to ensuring correct requirements, it is not

clear that the use of FM or any other analytical approach will result in significant benefits to
the project.

24

SectionIV NASA-GB-002-95
Release 1.0

competently performed, this formalization step will yield tangible, cost-

effective benefits. Next, identify the most critical parts of the core

requirements and (1) define, (2) formalize, and (3) prove key properties of

these critical system components or algorithms. Iterate the specification and

proof steps until the process shows noticeable signs of diminishing returns.

This point is reached when either no further requirements issues/problems

are detected or a large increase in effort is required to carry out the next step.

The only way to ascertain that the money spent on FM is indeed well spent is

to collect cost-benefit data for the given application. As with any method, the

cost-effectiveness of using FM depends on the characteristics of the project,

the productivity of the staff, the nature of the work environment, and the

available resources. All of these factors vary over time; regular sampling and

analysis of data and overall system quality with respect to cost considerations

are strongly advised.

One additional factor should be considered when evaluating cost, namely, the

potential effect of reuse. Like software development itself, FM can benefit

greatly by reusing assets. Abstract specifications and general theories can be

reused on other parts of the same project or in entirely different projects.

This is especially true when mechanized forms of FM are employed. If FM

are approached with a view toward future reuse of specifications, significant

cost savings can be realized in subsequent efforts and amortized over a long

period. This effect is more pronounced than a mere learning-curve

phenomenon. It stems from an emphasis on generic modes of expression

encouraged by the formalization process. Only experience can determine how

much of a factor reuse will be, but its potential should be recognized from the
outset.

IV. 5. FORMAL METHODS LIMITATIONS

FM do not guarantee a superior product. As with all tools, the potential

benefits of FM can be realized only if the tools are judiciously applied to

suitable applications. FM may provide less benefit than anticipated due to

anomalies such as the following.

• Erroneous specifications: Writing formal specifications, like writing

correct programs, requires dedication and attention to detail. In both cases,

an informal requirement must be turned into something that can be

mechanically interpreted, with the potential for undetected gaps,

misconceptions, or defects in the informal requirements, or for

misinterpretations or erroneous formalizations of correctly stated

requirements.

• "Flawed" verifications: In logic and FM, "proof" is a technical term that

describes a certain type of symbolic manipulation or "logical calculation."

25

SectionIV NASA-GB-002-95
Release 1.0

Like numerical calculations, logical calculations can fail due to: a mistake

in the calculation, a specification or system of equations that does not

accurately model the real world or the requirements, or a mistake in

interpreting the result calculated.

Although these anomalies are not unique to FM, the most effective responses

are generally available only through FM techniques. For example, informal

as well as formal specifications can be inconsistent, but only FM provide an

effective response to these potential problems in the form of typechecking to

insure certain forms of internal consistency; theorem proving to challenge

the content and implications of the specification; and clear, unambiguous

specifications to facilitate peer review.

26

SectionV NASA-GB-002-95
Release 1.0

V. OVERVIEW OF FORMAL METHODS TOOLS AND

TECHNIQUES

In this section, we provide a generic description of an automated formal

methods (FM) tool. This information is intended to be suggestive, rather

than exhaustive; our aim is to provide a starting point that will enable

readers to explore the existing literature for further information on general

FM techniques as well as specific FM tools.

We begin with a brief classification; FM can be classified according to whether

their primary purpose is descriptive or analytic. Descriptive methods focus

largely on specification as a tool for review and discussion, whereas analytic

methods focus on the utility of specification as a mathematical model for

analyzing and predicting the behavior of (hardware and software) systems, in

addition to their utility for communication. Not surprisingly, these different

emphases are reflected in the type of formal language favored by each of the

two methods. Descriptive FM generally use the notations of conventional

mathematics, most commonly, notations based on set theory, with

quantification restricted to first order functions that are essentially partial, and

types imposed on an inherently untyped foundation. These language choices

do not readily support automation and descriptive methods typically offer

attractive user interfaces and little in the way of deductive machinery. VDM

[Jones] and Z [Spivey] are examples of primarily descriptive FM.

Analytic FM place considerable emphasis on mechanization and general

design specification languages capable of supporting efficient automated

deduction. These methods can be further classified according to the degree of

automation provided by the theorem prover, or, conversely, by the amount

of user-interaction in the proof process. There are FM systems with

automatic theorem proving and virtually no user interaction, FM systems

with proof checking and virtually no automatic proof steps, and FM that

combine elements of both. Predictably, this spectrum represents tradeoffs

with respect to specification language, proof development, and user-

accessibility. FM systems that support fully automatic theorem proving

typically have restricted specification languages and powerful theorem

provers that can be difficult to control and offer little feedback on failed

proofs, but perform impressively in the hands of experts, e.g., Nqthm [Boyer].

Most state exploration tools also fall into this category. FM systems based on

proof checking generally offer more expressive languages, but require

significant manual input for theorem proving, e.g., HOL [Gordon]. FM

systems that combine a significant level of automation and user input fall

somewhere in between, depending on language characteristics and proof

methodology, e.g., Eves [Craigen2], PVS [Owrel].

27

SectionV NASA-GB-002-95
Release 1.0

A typical analytic FM tool consists of the following components:

• User Interface: integrates tool components, manages input and output.

• Parser: checks specifications for syntactic consistency and builds an

internal representation used by other components of the system.

• Prettyprinter or unparser: translates the internal representation of the

specification into a standard format for user display and output.

• Typechecker: checks specifications for semantic consistency, possibly

adding semantic information to the internal representation built by the

parser. If the type system of the specification language is not decidable 8,

theorem proving may be required to establish the type-consistency of a

specification. Systems in which the typechecker and prover are closely

integrated attempt to prove type correctness theorems automatically.

• Prover (proof checker): performs proofs over a syntactically and

semantically correct specification. As noted above, automated theorem

provers differ with respect to level of automation and degree of user
interaction.

• Other: Most FM systems also offer some or all of the following:

• Browser: produces cross-reference and displays cross-reference

information; particularly useful for large specifications possibly spread
across several files.

• Status Recorder, Reporter: maintains and reports status of specification

(e.g., parsed, typechecked) and proofs (e.g., proof complete or

incomplete, axiomatic foundation, status of lemmas used in proof).

• Output Generator: provides customized and possibly user-

customizable formatting for specifications and proofs.

Many toolsets are available to support work in FM. A comprehensive list of

tools available as of Spring, 1995, as well as an annotated list of the most

widely available, commonly used tools, appear in Appendix B. Most of these

tools have been developed in research environments and, consequently,
often lack certain features considered standard in the world of commercial

software (e.g., features such as sophisticated user interfaces, online technical

support, and software maintenance contracts). Nevertheless, most of these

tools represent the collective effort of high caliber research teams, some of

whom have been refining their tools for nearly 20 years. Many FM tools were

created under the sponsorship of government agencies active in the

development of software with much higher criticality of requirements than

that of most commercial software. Of all the large, publicly available software

packages, FM tools are quite possibly the most dependable. As a result, these

offerings should be considered viable candidates for project use, provided the

users understand they are not dealing with commercial tool vendors and that

they need to make appropriate allowances.

8Loosely, a problem is "not decidable" if no algorithm or computer program can be described to

solve all instances of the problem.

28

SectionVI NASA-GB-002-95
Release 1.0

VI. CONCLUSIONS

This guidebook has presented a management overview of formal methods

(FM) techniques for systems specification and verification. The overview is

based on recent experience in applying FM to real applications (see Appendix

A). The sections of the guidebook provide concrete suggestions on how to

integrate FM into an existing development process, how to establish FM on a

specific project, and what FM tools and techniques are available.

We review below the most important issues to be addressed by managers and

systems development personnel contemplating the application of FM to a

development process or a specific project:

• What are the key features of FM?

• Does the existing process or intended project meet the

application of FM?

• What are the benefits of using FM?

prerequisites for

VI.1. KEY FEATURES OF FORMAL METHODS

FM involve the use of logically precise specifications based on discrete

mathematics. This type of mathematics is well suited for modeling discrete

systems, especially those involving logical interactions. These formal

specifications greatly facilitate the modeling of requirements and high level

design (modeling of low level design and code is possible, but less cost-

effective).

The primary types of analysis supported by FM are checking the internal

consistency of a specification and proving that the system specified satisfies

desired properties. These types of analyses can be partially automated using

computer-based tools that not only support the initial development and

analysis of specifications, but also reduce the time required for re-analysis in

response to subsequent modifications or extensions.

VI.2. PREREQUISITES

FM are most beneficial when used in a reasonably mature, disciplined

environment. Processes that are chaotic, poorly organized or ill-defined and

understood, and those that have not yet employed conventional methods

such as formal inspections and testing regimes will generally realize less

benefit from the application of FM.

Motivation for adopting FM typically arises in environments with a strong

quality emphasis, where there exists a commitment to improve system

29

SectionVI NASA-GB-002-95
Release 1.0

quality beyond that provided by current practices. Achieving the level of FM

mastery necessary to apply them at their most rigorous will require

commitment and a disciplined approach. In an environment in which more

ad hoc and less systematic approaches are deemed adequate, fully rigorous FM

may be perceived as too hard and not worth the effort. Yet even in such an

environment, FM applied at a level less than full rigor can, with a reasonable

level of effort, make a contribution to overall system quality as a

comprehensive checking technique. On the other hand, FM are not

appropriate for highly procedural or numerical applications, or for

applications that are loosely structured with weak cohesion and few unifying
features.

Not all types of applications are equally suitable for FM. Safety-critical

systems are generally suitable for FM because they typically satisfy other

prerequisites such as a strong quality emphasis and because FM appear to be

particularly suitable for analyzing safety properties. Systems involving a high

degree of logical interactions (e.g., those with several modes or states

determined by Boolean conditions) are well-suited to FM because FM are

well-suited for representing logical conditions. Systems required to handle

safety or fault protection are particularly suitable for FM because they are both

safety critical and involve logical interactions.

Understanding the limitations of FM can help in the choice of which

applications and processes are likely to benefit from FM. For example, it is

generally not practical to prove an entire system correct. Complete formal

proofs have only been achieved for problems of small to moderate size.

Managing larger problems requires careful tailoring of the methods or the

problem. FM does not eliminate the need for system testing. However, FM

can help focus testing and complement the inherent incompleteness of

standard testing regimes with an exhaustive analysis, covering all cases. In

projects where sufficiently comprehensive testing is too costly or otherwise

infeasible, FM may be a viable alternative. Typically, however, FM are used

to complement inspections and testing, rather than to replace them.

In summary, positive answers to one or more of the following for a given

development environment indicate that FM can make a contribution in that

environment:

• Has the development organization achieved most of the elements of a

mature process (e.g., the Software Engineering Institute's Level 3)?

• Is greater quality of software subsystems required? Or have there been

problems with low quality requirements (or design) in the past?

• Is testing cost and coverage a problem that conventional techniques do

not adequately address?

• Would failure of one or more components cause the entire system to

fail catastrophically?

• Does the system involve complex switching or multiple modes?

3o

Section VI NASA-GB-002-95

Release 1.0

• Is the system required to handle safety or fault protection?

VI.3. BENEFITS OF FORMAL METHODS

• Formal specifications feature a high degree of logical precision which

eliminates much of the ambiguity that is found inevitably in informal

specifications. This precision translates into a higher likelihood that all

requirements writers and readers have a consistent understanding of the

requirements and a higher likelihood that the requirements will be

implemented correctly. Since formal specifications support abstract

descriptions, they help engineers focus on what they want to accomplish

instead of how to accomplish it. This may reduce the amount of detail

needed in a requirements document.

• Formal proofs eliminate ambiguity and subjectivity from requirements

analysis by providing a logical and precise argument for the behavior of

the requirements. This enhances the analysis performed in informal

reviews and inspections.

• The use of formal specifications and formal proofs provides a systematic,

repeatable approach to analysis. This translates into more consistent

analysis and a process that is less dependent on the skill and perseverance

of a particular analyst.

• The use of formal specifications and proofs is not an all-or-nothing

approach. It can be tailored to the level of rigor appropriate to a given

budget, schedule, and technical need. That is, it can be scaled to match the

needs of a project.

• Formal specifications and proofs can be applied at any life cycle phase,

including early in the life cycle where better analysis approaches are

currently most needed. Detecting and fixing defects earlier in the process

is far cheaper than finding them later in the process. For example, one

could tailor the use of specifications and proofs to focus on the verification

of critical properties early in the life cycle.

• Formal specification and proofs can be supported by computer-based tools.

This provides automation for tasks such as consistency checking and the

preparation of proofs. These tools are analogous to the use of automatic

calculators (and computers) in the analysis of engineering equations, but

rather than "plug in" numbers into a formal specification, one "plugs in"

symbolic variables and calculates the equivalent of a closed form solution.

This is an important benefit that provides an additional level of assurance

as well as reducing the cost of certain aspects of the analysis. These tools

greatly enhance the repeatability of the analysis by allowing proofs to be re-

executed. This also allows quick answers to the consequences of "What

if..." questions early in the developmental life cycle.

• Formal specifications and proofs complement the existing testing

approach, but go beyond what testing can accomplish. They complement

testing by providing a precise specification from which better test plans can

31

SectionVI NASA-GB-002-95

Release 1.0

be derived. They go beyond testing because they have the unique

capability to show that key properties are satisfied in entire classes of
scenarios.

There is hard evidence that FM can increase the quality of real systems as

well as solve historically difficult problems in computer science. This
evidence comes from demonstrations of formal methods on several

NASA projects (see Appendix A) as well as from increasing use in

commercial systems and other government programs [Craigenl]. FM

have been used to find issues in mature requirements and to improve the

understanding of complex systems.

In summary, FM enable defects in requirements to be detected earlier than

otherwise, and can greatly reduce the incidence of mistakes in interpreting,

formalizing, and implementing correct requirements. Furthermore, used

early in the life cycle, FM yield formalized statements that can be analyzed

and their consequences calculated in a repeatable manner. In addition to

these generic benefits attributable to the full spectrum of FM, the most

rigorous and fully formal versions of FM cause more defects to be detected

than would otherwise be the case and, in certain circumstances, subject to

certain caveats, guarantee the absence of certain defects. When used

judiciously and skillfully on suitable applications, FM provide compelling

evidence of correctness early enough to be useful, cheaply enough to be

feasible, and on the basis of modeling that is simple enough to be credible.

This guidebook attempts to provide project management the information

and insight necessary to make informed decisions concerning the application

of FM and to enable them to provide guidance that will allow their projects to
realize the benefits of FM use.

32

References NASA-GB-002-95
Release 1.0

[Ackerman]

[Austin]

[Bowenl]

[Bowen2]

[Boyer]

[Butler]

[Cook]

[Craigenl]

[Craigen2]

REFERENCES

A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. "Software

Inspections: An Effective Verification Process," IEEE

Software, 6(3):31-36, May, 1989.

S. Austin and G. Parkin, Formal Methods: a Survey,

Division of Information Technology and Computing,

National Physical Laboratory, Teddington, Middlesex, UK,

March, 1993.

J. Bowen and V. Stavridou, "Safety-Critical Systems, Formal

Methods, and Standards", Software Engineering Journal, July,
1993

J.P. Bowen and M.G. Hinchey, Applications of Formal

Methods, Prentice-Hall International, Ltd., 1995.

R.S. Boyer and J.S. Moore, A Computational Logic Handbook,

Academic Press, New York, NY, 1988.

R.W. Butler, An Elementary Tutorial on

Specification and Verification Using PVS, NASA

Memorandum Number 108991, June, 1993.

Formal

Technical

J.V. Cook, I.V. Filippenko, B.H. Levy, L.G. Marcus, and T.K.

Menas, "Formal Computer Verification in the State Delta

Verification System (SDVS)", in AIAA Computing in

Aerospace VIII, pp. 77-87, Baltimore, MD, October, 1991.

D. Craigen, S. Gerhart, and T. Ralston, An International

Survey of Industrial Applications of Formal Methods, U.S.

National Institute of Standards and Technology, Reports

NIST GCR 93/626 (Vols. 1 and 2), March 1993. Also available

from the U.S. Naval Research Laboratories, Formal Report

5546-93-9581/9582 (September 1993), and from the Atomic

Energy Control Board of Canada, Reports INFO-0474-1 (Vol.

l) and INFO-0474-2 (Vol. 2), January, 1995.

D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M.

Saaltink, "EVES: An Overview" in S. Prehn and W.J.

Toetenel, eds., VDM '91: Formal Software Development

Methods, pp. 389-405, v. 551 of Lecture Notes in Computer

Science, Noordwijkerhout, The Netherlands, October, 1991.

33

References NASA-GB-002-95

Release 1.0

[Craigen3]

[Davis]

[Dill]

[Dyer]

[Faganl]

[Fagan2]

[Fenton]

[Gordon]

[Guttag]

[Heninger]

[Jones]

D. Craigen, S. Gerhart, and T. Ralston, "Formal Methods

Reality Check: Industrial Usage", in Proceedings of Formal

Methods Europe '93 (FME'93), Springer-Verlag, 1993. Also in

Transactions on Software Engineering, February 1995.

A. M. Davis, "Why Industry often says 'No Thanks' to

Research," IEEE Software, 9(6):97-99, November, 1992.

D. Dill, A. Drexler, A. Hu, and C. Yang, "Protocol Verification

as a Hardware Design Aid," IEEE International Conference

on Computer Design: VLSI in Computers and Processors, pp.

522-525, IEEE Computer Society, October, 1992.

M. Dyer, The Cleanroom Approach to Quality Software

Development, John Wiley and Sons, New York, NY, 1992.

M. E. Fagan, "Design and Code Inspections to Reduce Errors

in Program Development," IBM Systems Journal, 15(3): 182-

211, March, 1976.

M. E. Fagan, "Advances in Software Inspection," IEEE

Transactions on Software Engineering, SE-12(7):744-751, July,
1986.

N. Fenton, "How Effective Are Software Engineering

Methods?," Journal of Systems and Software, 22:141-146, 1993.

M.J.C. Gordon and T.F. Melham, eds., Introduction to HOL:

A Theorem Proving Environment for Higher-Order Logic,

Cambridge University Press, Cambridge, UK, 1993.

J. V. Guttag, J. J. Horning, with S.J. Garland, K.D. Jones, A.

Modet, and J.M. Wing, LARCH: Languages and Tools for

Formal Specification, Texts and Monographs in Computer

Science, Springer-Verlag, 1993.

K. L. Heninger,

Complex Systems:
IEEE Transactions

January, 1980.

"Specifying Software Requirements for

New Techniques and their Application,"

on Software Engineering, SE-6(1):2-13,

C. B. Jones, Systematic Software Development Using VDM,

2/e, Prentice Hall International Series in Computer Science,

Prentice Hall, Hemel Hempstead, UK, 1990.

34

References NASA-GB-002-95
Release 1.0

[Kurshan]

[McMillan]

[Millerl]

[Miller2]

[Mills]

[NASAFAA]

[NASAFM]

[NASAGB1]

[NASAGB2]

[Nielsen]

[Owrel]

R. Kurshan, Automata-Theoretic Verification

Coordinating Processes, Princeton University Press, 1993.

of

K. McMillan, Symbolic Model Checking, Kluwer, Boston,

MA, 1993.

S.P. Miller, M.Srivas, Formal Verification of a Commercial

Microprocessor, Technical Report SRI-CSL-95-4, SRI

International, Menlo Park, CA, February, 1995.

S.P. Miller, M. Srivas, "Formal Verification of the AAMP5

Microprocessor -- A Case Study in the Industrial Use of

Formal Methods", in Proceedings of the 1995 Workshop on

Industrial-Strength Formal Specification Techniques

(WIFT'95), IEEE Computer Society, Orlando, FL, April 5-8,
1995.

H. D. Mills, M. Dyer, and R. Linger, "Cleanroom Software

Engineering," IEEE Software, 4(5):19-25, September, 1987.

John Rushby, Formal Methods and Digital Systems

Validation for Airborne Systems, NASA Contractor Report

4551, December, 1993.

NASA, Formal Methods Demonstration Project for Space

Applications - Phase I Case Study: Space Shuttle Orbit DAP

Jet Select, JPL Document D-11432, December 22, 1993.

NASA Office of Safety and Mission Assurance, Software

Formal Inspections Guidebook, NASA-GB-A302, August,
1993.

NASA Engineering Division, Software Formal Inspections

Standard, NASA-STD-2202-93, April, 1993.

M. Nielsen, K. Havelund, K. R. Wagner, and C. George, "The

RAISE Language, Method and Tools," Formal Aspects of

Computing, 1 (1):85-114, January-March, 1989.

S. Owre, J.M. Rushby, and N. Shankar, "PVS: A Prototype

Verification System," in Deepak Kapur, ed., 11th

International Conference on Automated Deduction (CADE),

Saratoga, NY, June 1992, pp. 748-752, v. 607 of Lecture Notes

in Artificial Intelligence, Springer-Verlag.

35

References NASA-GB-002-95

Release 1.0

[Owre2]

[Ports]

[Polak]

[Rumbaugh]

[Rushby]

[Smith]

[Spivey]

[vanSchou]

[Weber-Wulf]

[Weller]

[Wing]

[Wordsworth]

S. Owre, J. Rushby, N. Shankar, and F. von Henke, "Formal

Verification for Fault-Tolerant Architectures: Prolegomena

to the Design of PVS", in IEEE Transactions on Software

Engineering, 21(2), February 1995.

C. Potts, "Software-Engineering Research Revisited," IEEE

Software, 10(5):19-28, September, 1993.

W. Polak, "An Exercise in Automatic Program Verification",

IEEE Transactions on Software Engineering, 5(5), September
1979.

J. Rumbaugh, M. Blaha, W. Pramerlani, F. Eddy, W.

Lorenson, Object-Oriented Modeling and Design, Prentice
Hall, 1991.

J. Rushby and F. von Henke, "Formal Verification of

Algorithms for Critical Systems," IEEE Transactions on

Software Engineering, 19(1):13-23, January 1993.

M. Smith, B. Divito, A. Siebert, and D. Good,

Encrypted Packet Interface", ACM Software

Notes, 6(3), July, 1981.

"A Verified

Engineering

J. M. Spivey, Understanding Z, A Specification Language and

its Formal Semantics, Cambridge University Press, 1988.

A.J. van Schouwen, The A-7 Requirements Model: Re-

Examination for Real-Time Systems and an Application to

Monitoring Systems, Technical Report 90-276, Department of

Computing and Information Science, Queen's University,

Kingston, Ontario, Canada, May, 1990.

D. Weber-Wulf, "Proof-Movie -- A Proof with the Boyer-

Moore Prover, in Formal Aspects of Computing, 5(2):121-151,
1993.

E. F. Weller, "Lessons from Three Years of Inspection Data,"

IEEE Software, 10(5):38-45, September, 1993.

J. Wing, "A Specifier's Introduction to Formal Methods,"

IEEE Computer, September, 1990.

J.B. Wordsworth, Software Development with Z: A Practical

Approach to Formal Methods in Software Engineering,

Addison-Wesley, Ltd, 1992.

36

Appendix A NASA-GB-002-95
Release 1.0

APPENDIXA" FORMAL METHODS CASE STUDIES

This appendix summarizes the results of the application of formal methods

(FM) to requirements analysis for several NASA case studies. These

applications are drawn from the Space Shuttle, Space Station, and Cassini

(JPL) projects. Section A.1. presents a short overview of each case study,

including a table at the end that summarizes the goals, cost, and benefits for

each study. Section A.2. presents a more detailed report on two of the studies,

the Space Shuttle GPS CR (Change Request) study, and the Cassini Fault

Protection Software study.

A. 1. CASE STUDY DATA

Space Shuttle Jet Select

The first project was the formal specification of a very mature piece of the

Space Shuttle flight control requirements called Jet Select. The cost data for

this project are very rough because much time was spent organizing the team

and learning the toolset. The specification productivity was approximately 10

pages of requirements per work month. Few proofs were produced for the

first specification, but 46 issues were identified and several minor errors were

found in the requirements. A second specification was produced for an

abstract (i.e., high level) representation of the Jet Select requirements. This

abstraction, along with the 24 proofs of key properties, was accomplished in

under 2 work months, and although it only uncovered 6 issues, several of

these issues were significant 9. Although it would be foolhardy to calculate a

productivity rate or error-detection rate based on this data, it is reasonable to

conclude that FM, including the proofs, did not take a prohibitively long

amount of time and that it did have positive benefits.

Next, two additional specifications were developed for other parts of the

Space Shuttle flight control requirements. A high-level formal model of the

on-orbit Digital Auto Pilot (DAP) requirements (approximately 200 pages) was

developed in approximately 4 work weeks; this model focused on the

interfaces between functions. An object-oriented model of the DAP was also

developed in 2 work weeks. A goal of this trial project was to see how FM

and an object-oriented approach such as Object Modeling Technique (OMT)

could be used together. No issues were found (though a large set of

redundant requirements was identified), but a much better understanding of

how the pieces of the DAP fit together was gained. The study concluded that

FM can help the requirements analyst (RA) navigate through a large set of

9No error was found in the Space Shuttle requirements that would have affected the software

performance during a mission. The issues were significant because they were apparently not
previously considered and led to a better understanding of how the software would behave
under various off-nominal scenarios.

A-1

AppendixA NASA-GB-002-95
Release1.0

requirements, focusing on key interface data and logical interactions of
components, without significantly increasing the amount of time necessary to
analyze the requirements (i.e., 4-6 weeks is comparable to the amount of time
it would take a new RA to get a good overview of a subsystem of this size and
complexity without FM).

To gain better insight into the cost of proofs, a specification was made of a
three-contact, two-switch redundant event triggering system. The goal was to
prove that the system, under various assumptions was two fault tolerant.
The proof was successful and no errors were found. However, some cases
missing from the original analysis were found, some implicit assumptions
were documented, and a better understanding of the system was gained. The
size of the requirements was about 3 pages. The total cost, including proofs
was just over one work week. The overall proof was divided into 15small
pieces each of which took about 10minutes to prove. See [NASA] and [Kelly]
for additional detail.

SpaceStation FDIR
Next, an assessment was made of the highest level requirements for Failure
Detection, Isolation, and Recovery (FDIR) of the International Space Station
Alpha (ISSA) U.S. segment. These were system-level requirements which
contained a large software content. Fourteen (14)pages of FDIR requirements
were specified and analyzed in two-workmonths (2 people working 1/2 time
for 2 months); one comprehensive proof was done to assesscompleteness of
the specification. This assessment resulted in 12 issues, including 3 major
issues. The requirements development team concurred with all findings and
planned to correct the problems in the next release of the requirements
document. See[Hamilton] for additional detail.

SpaceShuttle GPSCR
A task was undertaken in 1994 involving a Space Shuttle software change
request (CR)concerning the integration of new Global Positioning System
(GPS) functions. The Shuttle is to be retrofitted with GPS receivers in
anticipation of the TACAN navigation system being phased out by the Air
Force. Additional navigation software will be incorporated to process the
position and velocity vectors generated by these receivers. A decision was
made to focus the trial project on just a few key areas because the CR itself is
very large and complex. A set of preliminary formal specifications was
developed for the new Shuttle navigation principal functions known as GPS
Receiver State Processing and GPS Reference State Processing, using the
language of SRI's Prototype Verification System (PVS). While writing the
formal specifications, 43 minor discrepancies were detected in the CR and
these have been reported to Loral requirements analysts.

Cassini CDS FP

A-2

Appendix A NASA-GB-002-95
Release 1.0

Another trial project used FM for the requirements analysis of safety-critical

software. The selected applications were the requirements for portions of the

Cassini spacecraft's system-level fault protection software. Object-oriented

modeling was used to guide the formal specification of the requirements.

Fifteen pages of object-oriented diagrams and 25 pages of PVS specifications

were produced. Thirty-seven lemmas specified properties essential for the

correct and hazard-free behavior of the software. Of these lemmas, 21 were

proven to be true and three were disproved using the PVS theorem prover.

A total of thirty-seven issues were found in the requirements, including

undocumented assumptions, inadequate requirements for boundary cases,

inconsistency and traceability issues, imprecise terminology, and one logical

error. Appendix A contains a fuller description of the trial projects and their

results. See also [Lutz].

Space Shuttle Three Engine Out CR

The Three Engine Out (3 E/O) Task is executed each cycle during powered

flight until either a contingency abort maneuver is required or progress along

the powered flight trajectory is sufficient to preclude a contingency abort even

if three main engines fail. The 3 E/O task consists of two parts: 3 E/O Region

Selection and 3 E/O Guidance. 3 E/O Region Selection is responsible for

selecting the type of external tank (ET) separation maneuver and assigning

the corresponding region index. 3 E/O Guidance monitors ascent parameters

and determines if an abort maneuver is necessary. If the ascent phase is

nominal, the primary function of this task is to provide display support,

indicating the 3 E/O contingency region status. If an abort maneuver is

required, 3 E/O guidance switches from display support to an auto guidance

steering function that involves calculating and commanding the appropriate

maneuvers with respect to external tank separation, post-separation -Z

translation, interconnected OMS dump (as necessary), maneuver to entry

attitude, and transition to the next abort phase (major mode 602).

We have developed and analyzed a formal model of the series of sequential

maneuvers that comprise the 3 E/O algorithm. To date, 20 potential issues

have been found, including undocumented assumptions, logical errors, and

inconsistent and imprecise terminology. These findings are listed as potential

issues pending review by the 3 E/O requirements analyst.

A-3

Appendix A NASA-GB-002-95
Release 1.0

Summary
The costs and benefits are summarized in Table A. 1.

Problem Goals Cost Benefits Notes

Jet Select

(low level)

Jet Select

(high level)

Orbit DAP

3 Contact
Switch

ISSA FDIR

Cassini
fault

protection

Gain familiarity
with Shuttle

requirements / FM

Prove key system
properties

Compare FM with
OMT, investigate
intemal interfaces

Prove safety
properties

Assess consistency
and completeness

Requirements

analysis of safety-
critical software

Approximately 6
months (very
rough estimate),

75 pages of
requirements

Approximated 2
months, 3 pages
of high level

requirements
4 weeks (FM)
2 weeks (OMT),

200 pages of
requirements

1 week, 3 pages of
requirements
2 months, 14
pages of
requirements

12 months, 100

pages of
requirements

46 issues raised

6 issues raised

redtmdant requirements
identified, increased

understanding gained

uncovered missing cases,
clarified assumptions
12 issues

37 issues

most issues were

minor, requirements

were very mature

several issues were

very significant even
though requirements

were vel g mature
requirements were

very mature

requirements were

velg, mature
system level
requirements with
large software
content

system under

development

Table A.I.: Summary of Cost and Benefits for Trial Projects

A.2. DESCRIPTIONS OF INDIVIDUAL TRIAL PROJECTS

A.2.1. CASSINI CDS FAULT PROTECTION SOFTWARE

1. Introduction

Another trial project used FM for the requirements analysis of mission-

critical software. The selected applications were the requirements for portions

of the Cassini spacecraft's system-level fault protection software. This on-

board software autonomously detects and responds to spacecraft faults. It was

targeted as an application in which the extra assurance possible via formal

specification and analysis was merited.

2. Approach

The approach taken in this demonstration project was to:

• Select the application domain. The selected applications were the

requirements for portions of the Cassini spacecraft's system-level fault-

protection software.

• Model the selected applications using object-oriented diagrams. The

object-oriented modeling tool used in this work was Paradigm Plus

(registered trademark of Protosoft, Inc.), which is an implementation of

OMT, the Object Modeling Technique.

A-4

Appendix A NASA-GB-002-95
Release 1.0

• Develop formal specifications in PVS using the PVS tool set, including

the type checker.

• Prove required properties. We determined properties that must hold

for the target software to be hazard-free and function correctly, specified

them in PVS as lemmas (claims), and proved or disproved them using

the interactive theorem-prover.

• Feedback results to the Project. Because we were analyzing

requirements that were still being updated, part of our task was to keep

current with the changes and to provide timely feedback to the Project

as they resolved the remaining requirements issues and began design

development.

3. Results

The experiment described here produced 25 pages of PVS specifications and 15

pages of OMT diagrams. 37 lemmas were specified. Of these, 21 were proven

to be true and 3 were disproved. An additional 13 lemmas were stated but not

proven. Five of these unproved lemmas were obviously true from the

formal specifications; four were out of the scope of our application; and four

remain to be proven.

The lemmas that were proved or disproved helped in the analysis of whether

the specifications were accurate, whether the software could introduce

hazards into the system, and whether any hidden assumptions were needed

for the software to function correctly.

The results obtained from the specification and analysis (including proofs) of

the requirements were of two types, issues found in the requirements and an

evaluation of our process of applying FM.

A total of 37 issues were found in the requirements.

as follows:
These were categorized

Undocumented assumptions: 11.

Inadequate requirements for off-nominal or boundary cases: 10.

Traceability and inconsistency: 9.

Imprecise terminology: 6.

Logical error: 1.

The evaluation of the process we used to

requirements led us to three conclusions:

• Using object-oriented models: For the

specify and analyze the

target applications, object-

oriented modeling offered several advantages as an initial step in

developing formal specifications. First, the object-oriented modeling
defined the boundaries and interfaces of the embedded software

applications at the level of abstraction chosen as appropriate by the

specifiers. In addition, the modeling offered a quick way to gain

multiple perspectives on the requirements. They were easy to

A-5

Appendix A NASA-GB-002-95
Release 1.0

understand and review. Finally, the graphical diagrams served as a

frame upon which to base the subsequent formal specification and

guided the steps of its development. Since the elements of the

diagrammatic model often mapped in a straightforward way to

elements of the formal specifications, this reduced the effort involved

in producing an initial formal specification. We also found that the

object-oriented models did not always represent the "why," of the

requirements, i.e., the underlying intent or strategy of the software. In

contrast, the formal specification often clearly revealed the intent of the

requirements.

Using FM for requirements analysis: Unlike earlier work in this

research project on software in which the requirements were very

mature and stable and the formal specification entailed reverse

engineering (Space Shuttle's Jet Select Subsystem), the work on

Cassini's fault-protection subsystem analyzed requirements at a much

earlier phase of development. Consequently, the requirements that we

analyzed were known to be in flux, with several key issues still being

worked (e.g., timing details, number of priority levels). A negative

effect of the lack of stability was that time was spent staying current

with changes and updating specifications to conform to changes in the

requirements. A positive effect was that issues identified during our

analysis could be readily fed back into the development process before

the design was frozen.

Based on our experience with this trial project, the formal specification

of unstable requirements had the following advantages:
• Laid the foundation for future work.

• Allowed rapid review of proposed changes and alternatives.

• Clarified requirements issues still being worked by elevating

undocumented concerns to clear, objective dilemmas.

• Complemented the lower-level FMEA (Failure Modes and Effects

Analysis) already being performed on the software, by providing

higher-level verification of system properties.

• Added confidence in the adequacy of the requirements that had

been analyzed using FM.

• Uncovered issues that might impact the subsequent design phase.

Using FM for safety-critical software: For a safety analysis it is

important to ensure that a hazardous situation does not occur, as well

as that the correct behavior does occur. Fault Tree Analysis, which

backtracks from a hazard to its possible causes, is one method used for

this kind of hazards analysis. However, unlike FM of specification and

proof, Fault Tree Analysis is an informal method which in practice

permits ambiguous or inadequate descriptions.

A-6

Appendix A NASA-GB-002-95
Release 1.0

FM helped us find hazardous scenarios by forcing us to show every

condition and by prompting us to define new, undocumented

assumptions through rigorous specification. The process of developing

formal specifications and proofs caused us to think about the full range

of cases, some of which were unanticipated.

In conclusion, our main contributions to the FM

demonstration project have been:

• Applying FM to the software requirements

RTOP in the Cassini

analysis of a project

currently under development,

• Using object-oriented diagrams to guide the formal specification of

software requirements,

• Formally specifying and proving a set of properties essential for the

correct and hazard-free behavior of the software, and

• Demonstrating that FM can be used to specify and analyze an

application involving safety-critical software.

A.2.2. SPACE SHUTTLE GPS SOFTWARE CR TASK

1. Introduction

A task was undertaken in 1994 involving a Space Shuttle software change

request (CR)concerning the integration of new Global Positioning System

(GPS) functions. The Shuttle is to be retrofitted with GPS receivers in

anticipation of the TACAN navigation system being phased out by the DoD.

Originally, GPS was required for navigation only during the entry flight phase

after the disappearance of TACAN, but the scope has been broadened to cover

all mission phases. Additional navigation software will be incorporated in

the Shuttle to process the position and velocity vectors generated by these

receivers. In particular, the Shuttle GPS software CR will provide the

capability to update the Shuttle navigation filter states with selected GPS state

vector estimates similar to the way state vector updates currently are received

from the ground. In addition, the CR will provide aid to the GPS receivers

and will support crew control and operation of GPS/GPC processing.

The goal of this FM task is to develop a model for a core subset of the GPS-

extended navigation functions for a single flight phase. Members of the

project team are working with requirements analysts from Loral Space

Information Systems to derive a set of formal specifications to describe the

new requirements and to model interfaces to existing Shuttle navigation

functions. This trial project will serve as another opportunity for the Shuttle

requirements analysts to evaluate the effectiveness of FM in the requirements

analysis process.

A-7

Appendix A NASA-GB-002-95
Release 1.0

2. Approach

A decision was made to focus the trial project on just a few key areas because

the CR itself is very large and complex. The general criteria for where to focus

were the following:

• Include as much of the new GPS principal functions as possible. It is

important to capture the essence of these new functions and their

interfaces to existing principal functions.

• Exclude as much of the crew interface functions as possible. We can

omit the display and crew input functions for now.

• Focus on entry-phase navigation functions both as the place with the

greatest need for GPS as well as the best place to put the archetype

model that can be cloned later, if desired, for handling other flight

phases.

After preliminary study of the CR and discussions with the responsible RA

for this CR, it was felt that the most promising approach was to hone in on

the new functions that provide selected GPS state vectors for consumption by

the existing entry navigation functions. This means emphasizing the

following principal functions:

• GPS Receiver State Processing

• GPS Reference State Processing

• GPS Subsystem Operating Program, except for the portions concerned

with low-level I/O processing

If positive results are obtained from this effort, the remaining portion of entry

navigation can be undertaken as a follow-on activity.

The FM approach is loosely based on the work conducted during 1993 on Jet

Select and Orbit DAP. Those techniques are being adapted as necessary to
accommodate the needs of this new area of the Shuttle software. All work is

being mechanically assisted by SRI's Prototype Verification System (PVS)
toolset.

3. Results

This task began with the Mod C version of the GPS CR. Initially, the relevant

portions of the CR were analyzed to determine the basic structure of the

principal functions and how they are decomposed into subfunctions. Based

on this organization, a general approach for modeling the functions and

expressing the formal specifications was devised. A white paper on this

prescribed technique for writing formal specifications for the GPS CR was

written and sent to the Loral requirements analysts. The formalization of

requirements is based on the use of an abstract state machine model. Each

principal function is modeled as such a state machine, which takes inputs and

local state values and produces outputs and new state values. This method

provides a simple computational model that nevertheless accommodates the

A-8

Appendix A NASA-GB-002-95
Release 1.0

key features of a principal function and its software architecture and has a

straightforward realization in PVS.

Next, the interfaces of the principal functions and their subfunctions were

carefully scrutinized. Particular emphasis was placed on being able to identify

the types of all inputs and outputs, and to match up all the data flows that are

implicit in the tabular format presented in the requirements. While

conducting this analysis and preparing to write the formal specifications, 43

minor discrepancies were detected in the CR and these have been reported to

Loral requirements analysts.

A set of preliminary formal specifications was developed for the principal

functions known as GPS Receiver State Processing and GPS Reference State

Processing, using the language of PVS. Assumptions were made as needed to

overcome the discrepancies encountered. Additional detail will be provided

to the formal specifications to characterize the functions with adequate

precision. In parallel with this activity, a small team of Loral requirements

analysts have been learning FM and PVS and positioning themselves to carry

out this work after the trial project is completed. The GPS CR task had been

on hold pending the outcome of a Space Shuttle decision to shelve the CR,
but it has been resumed as of 12/1/94.

A-9

Appendix A NASA-GB-002-95
Release 1.0

A.3. REFERENCES

[Hamilton] D. Hamilton, R. Covington, and J. Kelly, "Experiences in

Applying Formal Methods Analysis of Software and System

Requirements," Proceedings of the Workshop on Industrial-

Strength Formal Specification Techniques (WIFT'95), Boca

Raton, FL, April 5-8, 1995.

[Kelly] J. Kelly, R. Covington, D. Hamilton, "Results of a Formal

Methods Demonstration Project," Proceedings, WESCON/94

& Idea/Microelectronics Conference, Los Angeles, CA, Sept.
27-29, 1994.

[Lutz] R. Lutz and Y. Ampo, "Experience Report: Using Formal

Methods for Requirements Analysis of Critical Spacecraft

Software," Proceedings of the Nineteenth Annual Software

Engineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, December, 1994.

[NASA] NASA, Formal Methods Demonstration Project for Space

Applications - Phase I Case Study: Space Shuttle Orbit DAP

Jet Select, JPL Document D-11432, December 22, 1993.

A-11

Appendix A NASA-GB-002-95
Release 1.0

A-12

Appendix B NASA-GB-002-95
Release 1.0

APPENDIX B" GUIDE TO INFORMATION ON FORMAL

METHODS TOOLS

The following is a comprehensive list of formal methods (FM) tools available

throughout the world. Nearly all are available electronically and come free of

charge. This list has been compiled (in part) from the FM virtual library

maintained on the World Wide Web (WWW) by Jonathan Bowen at the

following URL:

http://www.comlab.ox.ac.uk/archive/formal-methods.html

Links to further information about these tools may be followed from the cited

home page.

Several of the tools from this list have been described in more detail below

for the benefit of the reader. This selection is not intended to be an

endorsement of any of these tools, but serves to highlight tools that are better

known, better supported, and have been subjected to more widespread use.

Additional information in compiling this list has been drawn from [Craigen]
and from several online databases of FM tools:

The Formal Methods Tools Database maintained by Tim Denvir.

URL file://chopwell.ncl.ac.uk/pub/fm_tools/fm_tools_db

The Database of Automated Reasoning Systems maintained by Carolyn
Talcott.

URL ftp :/ / sail.stanf ord.edu/ pub / clt/ ARS / READ ME

B. 1. A COMPREHENSIVE LIST OF FORMAL METHODS TOOLS

Most of the entries listed here can be found in the FM virtual library at the

Oxford University URL cited above. The links from that page can be followed

to obtain more detailed information. Those tools not directly accessible via a

WWW link from that page are annotated with either an e-mail address for

the appropriate contact person or an explicit URL for WWW access.

Acl2 theorem prover, a successor to the Boyer-Moore theorem prover,

is under development at Computational Logic, Inc. in Austin, Texas.

In progress.

Action Semantics, a framework for specifying formal semantics of

programming languages, is being pursued by an international group of

researchers, with an archive maintained at the University of Aarhus in
Denmark.

B-1

Appendix B NASA-GB-002-95
Release 1.0

Algebraic Design Language, a higher-order software specification

language based on algebraic concepts, has been developed at the Oregon
Graduate Institute.

ASLAN, a specification language processor/proof obligation generator

(email Dick Kemmerer on kemm@cs.ucsb.edu for further details), and

GIL, a graphical interval logic tool created by Laura Dillon

(dillon@cs.ucsb.edu) are available from a formal support tools archive

at UC Santa Barbara.

Boyer-Moore theorem prover (a forerunner of Nqthm) is available via

ICOT Free Software for use under Unix at ICOT (Japan), SICS (Sweden),

GMD (Germany) and Univ. of Oregon (USA).

B-Method, developed by Jean-Raymond Abrial (originator of Z) and

others, is a formal method for developing software from specifications

written in the Abstract Machine Notation. Tool support is provided in

the form of an interpreter called the B-Tool and an integrated set of

additional tools called the B-Toolkit, both available from B-CORE Ltd.,
UK. Email Ib.Sorensen@comlab.ox.ac.uk.

Circal (CIRcuit CALculus) is a system supporting a process algebra that

may be used to rigorously describe, verify and simulate concurrent

systems. It is available from Strathclyde University (UK).

Concurrency Workbench, from the University of Edinburgh, is an

automated tool for analyzing concurrent systems using model checking

under a variety of different process semantics.

Coq, the Calculus of Inductive Constructions, was developed at INRIA

in France by a team led by Gerard Huet. A proof assistant is provided as

well as the tool CtCoq, a working environment for the Coq theorem

prover.

CSP (Communicating Sequential Processes) is a process algebra

originally devised by C.A.R. Hoare at Oxford University. CSP is

supported by a model checking tool called FDR, developed by Bill
Roscoe.

DisCo is specification method for reactive systems including a tool

developed at the Tampere University of Technology, Finland. It has a

semantics and proof methodology based on the Temporal Logic of

Actions (TLA).

B-2

Appendix B NASA-GB-002-95
Release 1.0

Estelle, a formal notation based on an extended state transition model,

is supported by EDT (Estelle Development Toolset) and example

specifications. Contact estelle-request@cs.umb.edu to join the mailing
list.

EVES tool, based on ZF set theory, is from ORA, Canada. See Section

B.2 in this guidebook for additional information.

Evolving Algebras, developed at the University of Michigan, is a

method that focuses on semantics and seeks to bridge the gap between

computation models and specification methods.

Extended ML, a framework for the specification and formal

development of modular Standard ML programs, is a method

developed at the University of Edinburgh.

HOLis a mechanical theorem proving system. See Section B.2 in this

guidebook for additional information.

HyTech, from Cornell University, is an automatic tool for the analysis

of embedded systems. It computes the condition under which a linear

hybrid system satisfies a temporal-logic requirement. Installation

requires a Mathematica license.

IMPS, the Interactive Mathematical Proof System, is intended to

provide mechanical support for traditional mathematical techniques

and styles of practice. It was developed at the MITRE Corporation in

Bedford, Massachusetts.

Isabelle, from Cambridge University, is a generic theorem prover

supporting a variety of logics and providing a high degree of

automation. See also the Cambridge Automated Reasoning Group and

FTP access including an index. Email Larry.Paulson-

request@cl.cam.ac.uk for information, including requests concerning

the mailing list isabelle-users@cl.cam.ac.uk.

JAPE (Just Another Proof Editor), by Bernard Sufrin and Richard

Bornat from Oxford University, is an interactive tool supporting the

application of logical reasoning. It is available via anonymous FTP.

LAMBDA toolset from Abstract Hardware Ltd, UK, supports formal

verification for hardware/software co-design. Email lamba@ahl.co.uk.

To join the usergroup mailing list, email lambda-usergroup-

request@dcs.ed.ac.uk.

B-3

Appendix B NASA-GB-002-95
Release 1.0

Larch and LP (Larch Prover) support algebraic specification. See Section

B.2 in this guidebook for additional information.

LeanTaP, a tableau-based deduction theorem prover for classical first-

order logic, is available from the University of Karlsruhe in Germany.

LEGO is an interactive proof checker developed at the University of

Edinburgh and based on Standard ML and the Calculus of
Constructions.

LOTOS (Language of Temporal Ordering Specifications) is a formal

specification technique and process algebra from the University of
Twente in the Netherlands.

Maintainer's Assistant, a tool for reverse engineering and re-

engineering code using formal methods, was developed at the

University of Durham, UK.

Meije tools for the verification of concurrent programs are available
from INRIA in France.

Mural, from Manchester University (UK), is a tool to aid formal

reasoning about specifications including a proof assistant and VDM

support. See also the Mural Project.

Nqthm is a theorem prover and Pc-Nqthm is an interactive proof-

checker enhancement of the Boyer-Moore Theorem Prover from

Computational Logic Inc. See Section B.2 in this guidebook for
additional information.

Nuprl is a tool based on intuitionistic type theory. See Section B.2 in

this guidebook for additional information.

OBJ, originated by Joseph Goguen, includes the OBJ3 specification

language and the 2OBJ theorem prover, available from Oxford

University.

Otter, a fourth-generation automated deduction system, is a resolution-

based theorem prover developed at the Argonne National Laboratory
in Illinois.

Penelope, from Odyssey Research Associates in Ithaca, New York, is an

assertion language and theorem proving environment that supports

the specification and verification of sequential Ada programs. Email

maureen@oracorp.com.

B-4

Appendix B NASA-GB-002-95
Release 1.0

Petri Nets, a formal graphical notation for modeling systems with

concurrency, is a well-established technique supported by a variety of

tools accessible through the Petri Nets Web.

Pi-calculus is based on CCS (Calculus of Communicating Systems)

developed by Robin Milner et al. at the University of Edinburgh.

Supporting tools include the Mobility Workbench from Uppsala

University of Sweden.

ProofPower is a commercial tool, developed and marketed by ICL (UK),

supporting development and checking of specifications and formal

proofs in Higher Order Logic and/or Z. Support for Z uses a deep(ish)

embedding of Z into HOL, but includes syntax and type checking
customized for Z.

PVS (Prototype Verification System) is a tool based on classical typed

higher-order logic developed at the SRI International Computer

Science Laboratory. See Section B.2 in this guidebook for additional
information.

RAISE language and tools are available from CRI, Denmark. Email

raise@csd.cri.dk. See Section B.2 in this guidebook for additional
information.

Refinement Calculus, by Ralph Back et al at Abo Akademi University

in Finland, is a method of program construction based on stepwise
refinement.

RESOLVE, developed by the Reusable Software Research Group of the

Ohio State University, is a framework for component-based software

together with a specification language based on abstract data types and a

discipline for using the language. An archive is accessible from the

URL http://www.cis.ohio-state.edu/hypertext/rsrg/RSRG.html.

RRL, the Rewrite Rule Laboratory, supports theorem proving in first

order logic with equational theories. Email kapur@cs.albany.edu or

hzhang@cs.uiowa.edu.

SDL (Specification and Description Language) is an ITU-standardized

language for modeling communications systems based on an extended
state machine formalism. Various tools are available as noted in the

SDL WWW Server maintained by Tele Danmark Research of
Denmark.

B-5

AppendixB NASA-GB-002-95
Release1.0

SDVS (State Delta Verification System), from the Aerospace Corp. of E1
Segundo, California, is based on state deltas/temporal logic with
extensive proof support. Email blevy@aero.org.

SPIN is an automated verification tool (model checker), using a
language based on CSP for finite state systems such as protocols or
validation models of distributed systems. It was developed at AT&T
Bell Labs.

STEP,the Stanford Temporal Prover, is being developed by a team of
Stanford University researchers to support the formal verification of
concurrent and reactive systems based on temporal specifications and
model checking techniques.

TAM, the Temporal Agent Model, is a refinement calculus from the
Real-Time Systems Research Group at York University (UK) that

supports the specification of both functional and timing behavior.

TLA (Temporal Logic of Actions), developed by Leslie Lamport of the

DEC Systems Research Center, is a logic for specifying and reasoning

about concurrent and reactive systems. Tool support for TLA has been

provided by the University of Dortmund in Germany.

TPS and ETPS, the Theorem Proving System and the Educational

Theorem Proving System, provide an automated proving capability for

first order logic and type theory. They are available from Carnegie

Mellon University.

TTM/RTTL, from York University in Ontario, Canada, is a framework

for the specification and verification of real-time reactive systems based

on timed transition systems (TTMs) and real-time temporal logic

(RTTL).

UNITY, a programming notation and a logic to reason about parallel

and distributed programs, was developed by J. Misra and K.M. Chandy.

Various reports and a model checker for UNITY are available from the

University of Texas at Austin.

VDM (Vienna Development Method) is

development methodology. See Section
additional information.

a comprehensive software

B.2 in this guidebook for

Z is a notation for formal specification with tool support. See Section

B.2 in this guidebook for additional information.

B-6

Appendix B NASA-GB-002-95
Release 1.0

B.2. DETAILED DESCRIPTION OF SELECTED TOOLS

B.2.1. EVES

NAME: EVES

LANGUAGE: Verdi. Variant of classical set-theory (ZFC), with a library

mechanism for information hiding and abstraction, and an imperative

programming language.

FEATURES: GNU Emacs interface, well-formedness checker, integrated

automated deduction system (NEVER), proof checker, reusable library

framework, interpreter, compiler, facilities for status reporting,

portable.

SYNOPSIS: EVES is an integrated environment supporting the formal

development of systems from requirements to code. Additionally, it

may be used for formal modeling and mathematical analysis. To date,

EVES applications have primarily been in the realm of security-critical

systems.

The EVES mathematics is based on ZFC set theory without the

conventional distinction between terms and formulas. Development

is treated as "theory extension:" each declaration extends the current

theory with a set of symbols and axioms pertaining to those symbols.

Proof obligations are associated with every declaration to guarantee the

conservative extension property. The EVES library is the repository of

reusable concepts (e.g., a variant of the Z mathematical toolkit is

included with EVES releases) and is the main support for scaling,

information hiding, and abstraction. Library units are either

specification units (axiomatic descriptions), model units (models or

implementations of specifications), or freeze units (for saving work in

progress). The language Verdi is a wide-spectrum language that

provides all linguistic constructs for formally expressing requirements,

specifications, code, and EVES prover and system commands.

The automated deduction component of EVES (NEVER) provides

powerful automated deduction support with integrated decision

procedures. The design of NEVER has aimed for a balance between

what a computer can do well with what a developer can do well.

Hence, the support for simplification, rewriting, and heuristics,

provide significant automated capabilities. Additionally, there are

many prover commands that allow the developer to carefully direct

the prover as needed. The prover is fully integrated with EVES and

B-7

Appendix B NASA-GB-002-95
Release 1.0

makes full use of the modularization capabilities of the library. EVES

distinguishes between "proof discovery" and "proof certification."

NEVER aids in proof discovery and makes use of non-axiomatic

reasoning (e.g., the linear programming techniques used by the

simplifier). However, once a proof has been discovered, NEVER logs

the proof and a separate proof checker will certify that the proof meets

the requirements of the EVES logic.

DOCUMENTATION

M. Saaltink, S. Kromodimoeljo, B. Pase, D. Craigen and I. Meisels,

"Data Abstraction in EVES", in Proceedings of Formal Methods Europe

'93 (FME'93), Odense, Denmark, April 1993.

D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink,

"EVES: An Overview", in Proceedings of VDM'91, Noordwijkerhout,

The Netherlands, October, 1991.

Extensive documentation, including the reference manual, is available

electronically through the ORA Canada WWW page at URL

http://www.ora.on.ca/

TOOL REQUIREMENTS: EVES is implemented in a disciplined subset of

Common Lisp and is currently available on Suns (UNIX) and PCs

(under DOS and OS/2). EVES requires at least 16Mb RAM.

AVAILABILITY: EVES is available by tape or, by arrangement, FTP. All

installations of EVES must be licensed by ORA Canada. For academic

and research use, there is no charge for FTP access and a nominal

distribution fee for tapes. Requests should be sent to eves@ora.on.ca or

to the following contact person.

Dan Craigen
ORA Canada

Suite 100, 267 Richmond Road

Ottawa, Ontario K1Z 6X3 CANADA

Email: dan@ora.on.ca

Phone: +1 613 722 3700

Fax: +1 613 722 3531

B-8

Appendix B NASA-GB-002-95
Release 1.0

B.2.2. HOL

NAME: HOL (HOL, HOL2, HOL88, HOL90)

LANGUAGE: Higher order logic with definition and polymorphic
extensions.

FEATURES: Parser, pretty-printer, typechecker, forward and goal oriented

theorem prover.

SYNOPSIS: The HOL system is an interactive mechanized proof assistant.

The system supports both forward and backward proofs. The forward

proof style applies inference rules to existing theorems to obtain new

theorems and eventually the desired theorem. Backward or goal

oriented proofs start with the goal to be proven. Tactics are applied to

the goal and subgoals until the goal is decomposed into simpler

existing theorems.

Higher order logic is used as the description language of the HOL

system. Higher order logic provides a general and expressive vehicle

for reasoning about various classes of systems. Some of the

applications of the HOL system include the specification and

verification of compilers, microprocessors, interface units, algorithms,

and the formalization of process algebras, program refinement tools,

and distributed algorithms.

The HOL system is used by research groups throughout the world. A

technical discussion and support group exists via the electronic mailing

list info-hol@leopard.cs.byu.edu. Users regularly contribute to the HOL

theory library and an extensive library exists that can be obtained with

the HOL system distribution.

DOCUMENTATION:

M. J. C. Gordon and T. F. Melham

Cambridge University Press, 1993.

(eds.). Introduction to HOL.

A system manual is provided with the distribution in four volumes:

Tutorial, Description, Reference, and Libraries. The release also

contains case studies and LaTeX sources for training course slides.

HOL system information is available on the World Wide Web with
URL:

http://lal.cs.byu.edu/lal/hol-documentation.html

B-9

Appendix B NASA-GB-002-95
Release 1.0

TOOL REQUIREMENTS: The HOL system requires a platform running

Common Lisp (HOL88) or Standard ML (HOL90). The HOL system has

been used on workstations and PCs. A minimum of 8 megabytes of

memory is recommended for HOL88 and 24 megabytes for HOL90.

AVAILABILITY: HOL is available by tape (hol-support@cl.cam.ac.uk) or FTP:

HOL88 (lal.cs.byu.edu: pub/hol/holsys.tar.gz)

HOL90 (research.att.com: dist/ml/hol90/hol90.5.tar.Z)

SML/NJ (princeton.edu: pub/ml)

B.2.3. LARCH

NAME: Larch

LANGUAGE: First order logic with equational rewrite rules.

FEATURES: Parser, typechecker, user-directed prover.

SYNOPSIS: Larch is a specification language supporting equational theories

embedded in a first order logic. The Larch Prover (LP) is designed to

treat equations as rewrite rules and carry out other inferences such as

induction and proof by cases. A user may introduce operators and

assertions about the operators as part of the formalization process.

LP is designed to work midway between proof checking mode and fully

automatic theorem proving mode. Users may direct the proof process

at a fairly high level. LP attempts to carry out routine steps in a proof

automatically and provide useful information about why proofs fail.

LP is not designed to find difficult proofs automatically.

Larch and LP have been used in a variety of applications including

digital circuit specification and verification, reasoning about

concurrency, programming language semantics, and mathematics.

There has also been some Larch work with mainstream programming

languages such as the Larch/C Interface Checker (LCL) and C Program

Checker (LCLint).

DOCUMENTATION:

S. J. Garland and J. V. Guttag. A Guide ro LP, the Larch Prover.

Systems Research Center Report 82, 1991.

DEC

TOOL REQUIREMENTS: The Larch Prover is written in CLU and runs on

DEC MIPS, Alpha, and VAX computers as well as Sun workstations.

B-IO

AppendixB NASA-GB-002-95
Release1.0

AVAILABILITY: LP is available by FTP (larch.lcs.mit.edu: pub/Larch/lp2.4.*).
Contacts include garland@lcs.mit.edu and guttag@lcs.mit.edu.

B.2.4. NQTHM

NAME: Nqthm (Boyer-Moore Theorem Prover)

LANGUAGE: A variant of Pure Lisp.

FEATURES: Parser, pretty-printer, limited typechecker (language is largely
untyped), theorem prover, animator.

SYNOPSIS: Nqthm-1992, the final release of the Nqthm (Boyer-Moore)
prover, is a toolset based on a powerful heuristic theorem prover for a
restricted logic. There is no explicit specification language; one writes
specifications directly in the Lisp-like language that encodes the
quantifier-free, untyped logic. Recursion is the main technique for
defining functions and mathematical induction is the main technique
for proving theorems.

The highly automated prover can be driven by large databasesof
previously supplied (and proved) lemmas. The tool distribution
comes with many megabytes of formalized and proved applications.
For over a decade, the Nqthm series of provers has been used to
formalize a wide variety of computing problems including critical
algorithms, operating systems, compilers, security devices,
microprocessors, and pure mathematics.

An interactive enhancement (Pc-Nqthm-1992) is also available. This
front-end tool adds a higher degree of user control to the proof process
making the system act more like a proof checker than an automatic
prover. Acl2, the successor to Nqthm, is currently under development
by Boyer, Moore and Kaufmann.

DOCUMENTATION:
Robert S. Boyer and J Strother
Handbook. Academic Press,1988.

Moore. A Computational Logic

Additional documentation comes with the tool distribution, including

updated chapters of the Handbook.

TOOL REQUIREMENTS: Can be built on top of any Common Lisp on a

platform with about 8 megabytes of memory.

B-11

Appendix B NASA-GB-002-95
Release 1.0

AVAILABILITY: Available by ftp (ftp.cli.com:

tape.

Computational Logic, Inc.
Suite 290

1717 W. 6th Street

Austin, TX 78703 USA

+1-512-322-9951 +1-512-322-0656

software-request@cli.com

pub/nqthm/nqthm- 1992) or

B.2.5. NUPRL

NAME: Nuprl

LANGUAGE: Based on constructive type theory with an extensible syntax.

FEATURES: Window-based proof development system including library

management and structure editor.

SYNOPSIS: Nuprl was designed originally by Joseph Bates and Robert

Constable at Cornell University and has been expanded and improved

over the past 15 years by a large group of students and research

associates. Nuprl is a highly extensible open system that provides for

interactive creation of proofs, formulas, and terms in a typed language.

The Nuprl system supports higher order logics and rich type theories.

The logic and the proof system are built on a highly regular untyped

term structure, a generalization of the lambda calculus. Mechanisms

are given for reduction of these terms. The style of the Nuprl logic is

based on the stepwise refinement paradigm for problem solving in that

the system encourages the user to work backwards from goals to

subgoals until one reaches what is known.

As a computer system, Nuprl supports a window-based interactive

environment for editing, proof generation and function evaluation.

The system incorporates a sophisticated display mechanism that allows

users to customize the display of terms, even allowing for the use of

user-extended fonts. Based on structure editing, the system is free to

display terms without regard to parsing of syntax. The system also

includes the functional programming language ML as its meta-

language; users extend the proof system by writing their own proof-

generating programs (tactics) in ML. Since tactics invoke the primitive

Nuprl inference rules, user extensions via tactics cannot corrupt system

soundness. The system includes a library mechanism and is provided

with a set of libraries supporting the basic types including the integers,

B-12

Appendix B NASA-GB-002-95
Release 1.0

lists, and Booleans. The system also provides an extensive collection of
tactics.

The Nuprl system has been used as a research tool to solve open

problems in constructive mathematics. It has been used in formal

hardware verification and as a research tool in software engineering

and to teach mathematical logic to Cornell undergraduates. It is now

being used to support parts of computer algebra and is linked to the

Weyl computer algebra system.

DOCUMENTATION: An earlier version of the system is documented in the

book, Implementing Mathematics with the Nuprl Proof Development

System, by Constable et al. and published by Prentice Hall in 1986.

Documentation for version 4.1 comes online with the system. There is

also a Mosaic Nuprl Library Browser accessible from the Cornell

Computer Science Department home page on the World Wide Web.

TOOL REQUIREMENTS: Lucid or Allegro Common Lisp, XllR5.

AVAILABILITY: The system is available free via FTP or on tape.

Professor Robert Constable

Computer Science Department

Upson Hall

Cornell University

Ithaca, NY 14853

phone: +1-607-255-9204

email: nuprl@cs.cornell.edu

WWW: http:/ /www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html

B.2.6. PVS

NAME: PVS (Prototype Verification System)

LANGUAGE: Classical, typed higher-order logic with predicate subtypes,

dependent typing, and abstract data types.

FEATURES: Customized GNU Emacs interface, parser, typechecker,

integrated proof checker, BDD simplifier, prettyprinter, browser,

specification libraries, and facilities for status-reporting, cross-reference

generation, and LaTeX-printing.

SYNOPSIS: PVS provides an integrated environment for the development

and analysis of formal specifications and is intended primarily for the

B-13

Appendix B NASA-GB-002-95
Release 1.0

formalization of requirements and design-level specifications, and for

the rigorous analysis of difficult problems. PVS has been applied to

algorithms and architectures for fault-tolerant flight control systems, to

problems in real-time system design, and to hardware verification.

PVS specifications are organized into parameterized theories that may

contain assumptions, definitions, axioms and theorems. Definitions

are guaranteed to provide conservative extension. Libraries of proved

specifications from a variety of domains are available.

PVS offers a rich type system, strict typechecking, and powerful

automated deduction with integrated decision procedures for linear

arithmetic and other useful domains, and a comprehensive support

environment. A PVS specification is typically expressed using type

constraints that are enforced through automatically generated proof

obligations, many of which are automatically discharged by the system.

The expressive specification language allows concise and natural

specifications across a wide range of problem domains. The proof

checker provides direct control by the user for the higher levels of

proof development, and powerful automation for the lower levels,

using a collection of primitive inference procedures that can also be

combined by the user to develop higher-level proof strategies. Proofs

yield scripts that are displayed in a readily understood format and can

be edited and reused. Context is preserved across sessions.

DOCUMENTATION:

S. Owre, N. Shankar, J.M. Rushby.

Specification and Verification System

Science Laboratory, SRI International.

System, and Prover Reference Manuals.

"User Guide for the PVS

(Beta Release)". Computer

Three volumes: Language,

These and other manuals, papers, and technical reports both by the FM

group at SRI and outside users are documented in the SRI WWW page

and available by anonymous FTP.

FTP: ftp to ftp.csl.sri.com, connect to directory/pub/reports

WWW: http: //www.csl.sri.com/sri-csl-fm.html

User group: pvs@csl.sri.com

TOOL REQUIREMENTS: PVS is implemented in Common Lisp and runs on

most modern workstations; the requirements are a Unix machine that

runs Gnu Emacs and a Common Lisp compiler with integrated CLOS.

If typeset specifications are of interest, LaTeX and an appropriate viewer

must also be available. The standard version of PVS is implemented

in Allegro Lisp and runs on Sun SPARCstations. PVS requires about

B-14

Appendix B NASA-GB-002-95
Release 1.0

20 megabytes of disk space, 50 megabytes of swap space, and 32

megabytes of real memory.

AVAILABILITY: PVS is available by tape or by FTP. All installations of PVS

must be licensed by SRI. There is no license fee and no charge for a

PVS system obtained via FTP. A nominal distribution fee is charged

for tapes and for nonstandard versions. Requests should be addressed

to pvs-request@csl.sri.com or to one of the following contacts.

John Rushby, N. Shankar, Sam Owre

Computer Science Laboratory
SRI International

333 Ravenswood Avenue

Menlo Park, CA 94025 USA

Email: {rushby, shankar, owre}@csl.sri.com
Phone: +1-415-859-5456/5272/5114

Fax: +1-415-859-2844

B.2.7. RAISE

NAME: RAISE (Rigorous Approach to Industrial Software Engineering)

LANGUAGE: Wide-spectrum language for specifying operations and

processes plus derivations from one level of specification to the next.

FEATURES: Window-based editor, parser, typechecker, proof tools, database,
translators to C, Ada.

SYNOPSIS: RAISE is an approach that is based on a rigorous development

methodology with less emphasis on mechanical theorem proving and

formal analysis. Under the RAISE methodology, development steps

are carefully organized and formally annotated using the RAISE

specification language. The CORE requirements method is also

provided as a requirements approach for front-end analysis.

Derivations from one level to the next generate proof obligations.

These obligations may be addressed using the proof tools. A notion of

validation (establishing system properties) is also supported. Detailed

descriptions of the development steps and overall process are available

under the tools. The final implementation step may be partially

mechanized for common languages (C, Ada).

B-15

AppendixB NASA-GB-002-95
Release1.0

RAISE evolved from the VDM formal approach. It has been supported
by the European ESPRIT projects and the VDM Europe support
organization. The LaCoS project is the primary user community,
under support from ESPRIT. The specification language and the
toolset are still evolving.

DOCUMENTATION:
M. Nielsen, K. Havelund, K. Wagner, and C. George. The RAISE

Language, Methods, and Tools. Formal Aspects of Computing, 1:85-

114, 1989.

Other documentation includes overviews, method manual, tool

manuals, and specification language manuals.

TOOL REQUIREMENTS:

AVAILABILITY: RAISE tools are available from Computer Resources

International in Denmark (raise@csd.cri.dk).

B.2.8. VDM

NAME: VDM (Vienna Development Method)

LANGUAGE: First order logic with abstract data types.

FEATURES: Parsers, typecheckers, pretty-printers, proof support, animators,

test case generators.

SYNOPSIS: VDM is a model-oriented formal specification and design

method based on discrete mathematics. The formal specification

language component of VDM is known as META-IV. In VDM, a

system is to be developed by first specifying the system formally and

proving that the specification is consistent, then iteratively refining

and decomposing the specification while proving that each refinement

satisfies the previous specification. In theory, this continues until the

implementation level is reached.

Specifications are written as constructive specifications of an abstract

data type, by defining a class of objects and a set of operations that act

upon the objects. The model of a system or subsystem is then based on

such an abstract data type. A number of primitive data types are

provided in the language along with facilities for user-defined types.

Included are conventional first order logic features.

B-16

Appendix B NASA-GB-002-95
Release 1.0

VDM has been used extensively in Europe. Its methods are closely
related to those of RAISE and Z. A number of tools have been

developed to support formalization using VDM including the Mural

tool to aid formal reasoning via a proof assistant.

DOCUMENTATION:

D. Bjorner and C. B. Jones (eds.). The Vienna Development Method:

The Meta-Language. Lecture Notes in Computer Science, 61, Springer-

Verlag, 1978.

D. Bjorner and C. B. Jones. Formal Specification and Software

Development. Prentice-Hall, 1982.

S. Hekmatpour and D. Ince. Software Prototyping, Formal Methods

and VDM. Addison-Wesley, 1988.

TOOL REQUIREMENTS: VDM tools are provided by a variety of sources and

are not integrated into a single toolset. Most will run on conventional

Unix workstation platforms.

AVAILABILITY: VDM tools are available from a variety of sources. See the

VDM WWW page (file://hermes.ifad.dk/pub/docs/vdm.html) for
details.

B.2.9. z

NAME: Z (pronounced "zed")

LANGUAGE: Set theory and first order logic with graphical representations.

FEATURES: Parsers, typecheckers, pretty-printers, proof support.

SYNOPSIS: Z has evolved from being initially only a loose representation for

formal specifications to a semi-standardized language with tool support

provided by a variety of third parties. It has been under development

by the Programming Research Group at Oxford University. Z is based

on set theory and is oriented toward constructing models. The basic
form used is called a "schema," which is used to introduce an

axiomatization of a function. Models are constructed by specifying a

series of schemas using (typically) a state transition style.

Tools for Z initially were limited to formatting and typechecking, but

are progressing into proof support, primarily through the use of HOL

as the underlying theorem proving engine. These include both limited

proof checking tools as well as more aggressive theorem proving tools.

B-17

Appendix B NASA-GB-002-95
Release 1.0

The standardization of Z should solidify the tool base and enhance

interest in mechanized support.

Z is currently undergoing standardization in the UK and inter-

nationally through ISO. Z has been used extensively in Europe,

primarily in the UK, but has seen little North American use. It has

been used to write formal specifications for various industrial software

development efforts and has resulted in two awards for technological

achievement: for the IBM CICS project and for a specification of the

IEEE standard for floating-point arithmetic.

DOCUMENTATION:

A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons,
1990.

J. M. Spivey. Understandin 8 Z, A Specification Lansuase and its

Formal Semantics. Cambridge University Press, 1988.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
1989.

TOOL REQUIREMENTS: Z tools are provided by a variety of sources and are

not integrated into a single toolset. Most will run on conventional

Unix workstation platforms. Heavy use is made of LaTeX for printing

formatted specifications.

AVAILABILITY: Z tools are available from a variety of sources. See the Z

WWW page (http://www.comlab.ox.ac.uk/archive/z.html) for details.

B.3. STATE-SPACE EXPLORATION TOOLS

B.3.1. COSPAN

NAME: COSPAN (COordination SPecification ANalysis)

LANGUAGE: S/R (selection/resolution) belongs to a class of languages, the

omega-regular languages, that are expressible as finite-state automata

on infinite strings or behavioral sequences. The s/r language is used to

define both the system and its requirements and is particularly suited

to developing distributed or state-machine-based environments
viewed in terms of data flow.

FEATURES: COSPAN is a general-purpose, rapid-prototyping tool developed

at AT&T that provides a theoretically seamless interface between an

B-18

Appendix B NASA-GB-002-95
Release 1.0

abstract model or standard and its target implementation, thereby

supporting top-down system development and analysis. COSPAN

offers facilities for documentation, conformance testing, software

maintenance, debugging, and statistical analysis, as well as libraries of

abstract data types and reusable pretested components.

SYNOPSIS: COSPAN has been used in the commercial development of both

software and hardware systems, a partial list of which includes:

analysis of high-level models of several communications protocols

(e.g., the X.25 packet switching link layer protocol, the file transfer and

management protocol (FTAM) of the International Telegraph and

Telephone Consultative Committee (CCITT), and AT&T's Datakit

universal receiver protocol (URP) level C), verification of a custom

VLSI chip to implement a packet layer protocol controller, and analysis

and implementation of AT&T's Trunk Operations Provisioning

Administration System (TOPAS).

COSPAN is based on homomorphic reduction and refinement of

omega-automata, i.e., the use of homomorphisms to relate two

automata in a process based on successive refinement that guarantees

that properties verified at one level of abstraction hold in all successive

levels. Reduction of the state space is achieved by exploiting

symmetries and modularity inherent in large, coordinating systems.

Verification is framed as a language-containment problem; checking

consists of determining whether the language of the system automaton

is contained in the language of the specification automaton. Omega-

automata are particularly well-suited to expressing liveness properties,

i.e., events that must occur at some finite, but unbounded time.

DOCUMENTATION:

Z. Har'EL and R. Kurshan. "Software for Analytical Development of

Communications Protocols." AT&T Technical Journal, pp. 45-59. Jan,
Feb 1990.

R. Kurshan. Automata-Theoretic Verification of Coordinating

Processes. Princeton University Press, 1993. A compressed post-script

version of this book is available as notes.PS.Z via ftp (host:

ftp.research.att.com; directory: /dist/COSPAN).

TOOL REQUIREMENTS:

AVAILABILITY: COSPAN may be obtained by universities for

educational/research purposes through a written request by the

department chair on departmental letterhead to the contact listed

below. Once a non-disclosure agreement is signed, COSPAN binaries

are made available at no charge by tape or ftp.

B-19

AppendixB NASA-GB-002-95
Release1.0

Contact: R. Kurshan
AT&T Bell Labs, Room 2C-353
Murray Hill, NJ 07974
Email: k@research.att.com

B.3.2. MURPHI

NAME: Murphi

LANGUAGE: High-level, transition-rule-based description language for
concurrent systems.

FEATURES: Automatic state exploration tool that can be used as a verifier or
simulator.

SYNOPSIS: Murphi is a complete finite-state verification system that has
been tested on extensive industrial-scale examples including cache
coherence protocols and memory models for commercially-designed
multiprocessors.

The Murphi Verification System consists of the Murphi Compiler, and
the Murphi description language for finite-state asynchronous
concurrent systems which is loosely-based on Chandy and Misra's
Unity model and includes user-defined datatypes, procedures, and
parameterized descriptions. A version for synchronous concurrent
systems is under development. A Murphi description consists of
constant and type declarations, variable declarations, rule definitions,
start states, and a collection of invariants. The Murphi compiler takes a
Murphi description and generates a C++ program that is compiled into
a special-purpose verifier that checks for invariant violations, error
statements, assertion violations, deadlock, and (in certain versions)
liveness. The verifier attempts to enumerate all possible states of the
system, while the simulator explores a single path through the state
space. Efficient encodings, including symmetry-based techniques, and
effective hash-table strategies are used to alleviate state explosion.

DOCUMENTATION:
D. Dill, A. Drexler, A. Hu, and C. Yang. "Protocol Verification as a
Hardware Design Aid." IEEE International Conference on Computer

Design: VLSI in Computers and Processors, pp. 522-525. IEEE

Computer Society, October, 1992.

B-20

AppendixB NASA-GB-002-95
Release1.0

C.N. Ip and D. Dill. "Better Verification through Symmetry."
International Conference on Computer Hardware Description

Languages, pp. 87-100. April, 1993.

These and other papers and manuals are available by FTP from host

snooze.stanford.edu in directory/pub/papers/verification.

TOOL REQUIREMENTS: C++ compiler.

AVAILABILITY:

Available by FTP; host: snooze.Stanford.Edu, directory: /pub/murphi

Email inquiries: murphi@snooze.stanford.edu

Contact: David L. Dill

Computer Science Department

Stanford University

Stanford, CA 94305

Email: dill@hohum.Stanford.Edu or

Phone: +1-415-725-3642

FAX: +1-415-725-6278

B.3.3. SMV

NAME: SMV (Symbolic Model Verifier)

LANGUAGE: The input language, SMV, is a relatively high-level description

language that provides modular hierarchical descriptions and

definition of reusable components. The specification language,

Computation Tree Logic (CTL), is a propositional, branching-time

temporal logic.

FEATURES: Symbolic model checker that verifies finite state systems

described in the SMV language against specifications written in CTL.

Implemented with BDDs (reduced, ordered Binary Decision Diagrams),

SMV can handle both synchronous and asynchronous systems, and

arbitrary safety and liveness properties.

SYNOPSIS: The SMV system has been distributed widely and used to verify

industrial-scale circuits and protocols, including the cache coherence

protocol described in the IEEE Futurebus+ standard and the cache

consistency protocol developed at Encore Computer Corporation for

their Gigamax distributed multiprocessor.

B-21

AppendixB NASA-GB-002-95
Release1.0

SMV is designed to provide largely automatic verification of finite state
system descriptions that run the gamut from completely synchronous
to completely asynchronous, and from detailed to abstract. The SMV
input language offers a set of basic data types consisting of bounded
integer subranges and symbolic enumerated types, which canbe used to
construct static, structured types. CTL provides a concise syntax for
expressing a rich classof temporal properties including safety, liveness,
fairness, and deadlock freedom. SMV uses a BDD-based symbolic
model checking algorithm to avoid explicitly enumerating the states of
the model. With carefully-tuned variable ordering, the BDD algorithm
yields a system capable of verifying circuits with extremely large
numbers of states. Examples of the scalability of this approach include
a pipelined ALU with over 10lz° states and an asynchronous stack with
over 105ostates.

DOCUMENTATION:
J.Burch, E. Clarke, D. Long, K. McMillan and D. Dill. "Symbolic Model
Checking for Sequential Circuit Verification." IEEE Transactions on

Computer-Aided Design, Vol. 13, No. 4, April, 1994.

K. McMillan. Symbolic Model Checking. Kluwer, Boston, MA, 1993.

Additional papers and manuals are available by FTP from the CMU

host and directory shown below.

TOOL REQUIREMENTS: SMV runs on Sun3's and Encore Multimaxen

under the Mach operating system. It may also run on Sun4, DecStation

3000, and VAX, but performance varies. Certain dependencies on the

MACH operating system may need to be removed via minor
modifications to makefiles for non-MACH sites.

AVAILABILITY: SMV is available by FTP or by tape. All users are asked to

sign a license agreement available online. There is no license fee.

FTP: host: emc.cs.cmu.edu, directory: /pub/tape

Contact: Edmund Clarke

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3890

Email: emc+@cs.cmu.edu.

B-22

Appendix B NASA-GB-002-95
Release 1.0

B.4. REFERENCES

[Craigen] D. Craigen, S. Gerhart, and T. Ralston, An International

Survey of Industrial Applications of Formal Methods, U.S.

National Institute of Standards and Technology, Reports

NIST GCR 93/626 (Vols. 1 and 2), March 1993. Also available

from the U.S. Naval Research Laboratories, Formal Report

5546-93-9581/9582 (September 1993), and from the Atomic

Energy Control Board of Canada, Reports INFO-0474-1 (Vol.

1) and INFO-0474-2 (Vol. 2), January, 1995.

B-23

Appendix B NASA-GB-002-95
Release 1.0

B-24

SuggestionsforImprovementsForm NASA-GB-002-95
Release1.0

SUGGESTIONS FOR IMPROVEMENTS FORM

Product Name: Formal Methods Specification and Verification Guidebook for

Software and Computer Systems

Volume I: Planning and Technology Insertion

Product Version Number: NASA-GB-002-95

RELEASE 1.0

NASA Change Request Tracking Number:

Name of Submitting Organization:

Organization Contact:

Mailing Address:

Telephone:

Date:

Change Location Tag

Short Title:

(use section or paragraph #, figure #, key process area ID, practice ID,

etc.):

Proposed Change:

Rationale for Change:

Note: For NASA to take appropriate action on the change request, we must have a clear

description of the recommended change along with supporting rationale.

Send US Mail To:

FM Specification and Verification Guidebook, Vol. I

NASA IV&V Facility

100 University Drive

Fairmont, WV 26554

Send via Internet Email To:

John.C.Kelly@ccmail.jpl.nasa.gov

C-1

SuggestionsforImprovementsForm NASA-GB-002-95
Release 1.0

C-2

